Cryo electron tomography

Cryo-EM SPA

1 view, multiple copies of the object

Cryo-ET 1 object, multiple views

o.lambert@cbmn.u-bordeaux.fr

Amélie Leforestier Laboratoire de Physique des Solides, Orsay

Engel et al (2016)

Unique objects

Al-Amoudi et al (2007)

Titan Krios IGBMC, Strasbourg

Cryo electron tomography

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82–96

- Tilt series acquisition (electron dose, acquisition schemes)
- CTF-correction (2D, 3D)
- Alignment
- Tomogram reconstruction
- Tomogram visualization
- Segmentation

Missing information: tilt range limitation

High tilt polepieces

Tomography holders

Leary & Midgley (2019) Electron tomography in material sciences, Springer Handbook of microscopy, pp 1279-1329

Fourier space partially and inhomogeneously filled

 $N \approx$ number of images (angle increment)

Crowther, DeRosier & Klug (1970). Porc. Roy. Soc. Lond. A 317, 319-340.

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82–96

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82-96

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82–96

angular limitation + tilt axis orientation

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82-96

Virtual slices 0.218 nm

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82–96

angular limitation + tilt axis orientation

H. Jinnai, R.J. Spontak / Polymer 50 (2009) 1067-1087

Microtubules

A. Guesdon et al./Journal of Structural Biology 181 (2013) 169–178 A.G. Myasnikov et al. / Ultramicroscopy 126 (2013) 33–39

Microtubules

A. Guesdon et al./Journal of Structural Biology 181 (2013) 169–178

C.A. Diebolder et al./Journal of Structural Biology 190 (2015) 215-223

Polyribosomes

Subtomogram averaging

Dual tilt vs single tilt tomography:

- faster convergence of iterative subtomogram averaging
- better 3D classification using multivariate statistical analysis

A.G. Myasnikov et al. / Ultramicroscopy 126 (2013) 33-39

Correction of the in-plane resolution anisotropy

Ou et al (2017) ChromEMT, Science

Missing information: a cylindrical holder

Missing information: a cylindrical holder

20

0 10 20 30

40 ⊾ 0

40 50

Position / nm

10

20 30 40 50

Position / nm

C.M. Palmer, J. Löwe / Ultramicroscopy 137 (2014) 20-29

30

40

60 L 0

10

20

Position / nm

Tilt series acquisition

- Choice of angular increment / max tilt angle
- Single axis/dual axis
- Electron dose
- Acquisition scheme
- Zero loss filtering
- Phase plates
- In practice

Tilt series acquisition: electron dose

Dose fractionation theorem

R. Hegerl & W. Hoppe (1976) Influence of Electron Noise on Three-dimensional Image Reconstruction. Zeitschrift für Naturforschung A. 31, 1717–1721.

Ewen et al (1995) Ultramicroscopy 60, 357-373

« the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. »

SPA 2D imaging 20 e⁻/Å² Total electron dose ≤ 100 e⁻/Å² sample target resolution

Dose distribution

 $\alpha_{n+1} = \alpha_n + \arcsin(\sin\alpha_0 \cos\alpha_n)$

Saxton & Baumeister, Ultramicroscopy, 1984 Grim et al, Biophys. J. 1998

Hagen et al, J. Struct. Biol. (2017)

Tilt series acquisition: zero loss filtering

Egerton (2008) Reports on Progress in Physics, 72, 016502. Sadamatsu et al, Ultramicroscopy, 2016 in-focus

Defocus Phase Contrast

(d)

1.5 um defocus

Use of Phase Plates

Volta potential phase plate for in-focus Chack for phase contrast transmission electron microscopy

Radostin Danev, Bart Buijsse, Maryam Khoshouei, Jürgen M. Plitzko, and Wolfgang Baumeister PNAS November 4, 2014 111 (44) 15635-15640; published ahead of print October 20, 2014 https://doi.org/10.1073 /pnas.1418377111

Frits Zernike (1888-1966)

(f)

DPC Volta potential central beam (beam-film interaction) OL aperture $\cos(\gamma(\mathbf{k}))$ $sin(\gamma(\mathbf{k}))$ 300 kV, λ =0.001968 nm, C_s = 3 mm ∆z = 93 nm 1.0 1.0 ∆z = 56 nm 0.5 0.5 $-\sin(\gamma(k))$ $\cos(\gamma(k))$ 0.0 0.0 -0.5 -0.5 $\Delta z = 0 \text{ nm}$ -1.0 -1.0 0 2 3 0 4 5 1 1 k [1/nm]

300 kV, λ =0.001968 nm, C_s = 3 mm

in-focus

1.5 um defocus

Use of Phase Plates

Volta potential phase plate for in-focus phase contrast transmission electron microscopy

Radostin Danev, Bart Buijsse, Maryam Khoshouei, Jürgen M. Plitzko, and Wolfgang Baumeister PNAS November 4, 2014 111 (44) 15635-15640; published ahead of print October 20, 2014 https://doi.org/10.1073 /pnas.1418377111

Volta potential

(beam-film interaction)

Volta phase plate in-focus

(d)

Conventional cryoEM 1µm defocus PP cryoEM In-focus

Tilt series acquisition: Phase Plates + energy filter

Conventional cryoEM 1µm defocus

PP cryoEM In-focus + energy filter

Bacteriophage T5 (80 nm) + gold NP (10 nm)

Tilt series acquisition: Phase Plates + energy filter

Phase Plates: limitations & perspectives

• phase shift not constant during acquisition (increases with dose accumulation)

- signal attenuation (presence of carbon film)
- CTF determination & correction

- tomogram segmentation
- sub-tomogram averaging?

Tilt series acquisition

± 60° angle increment 2° 1.2 Å² e⁻/Å² pixel size 0.218 Å bidirectionnal in focus VPP zero-loss filtering

specimen .

Tilt series acquisition

 \Rightarrow XY shifts \Rightarrow Z shift

See Grant Jensen's lectures

https://www.youtube.com/playlist ?list=PL8 xPU5epJdctoHdQjpfHm d z9WvGxK8-

CTF correction

- low electron dose per image
- specimen thickness at high tilt angle
- defocus gradient

CTF correction: 2D

Correction of tilt focus gradient

CTF correction on strips parallel to the tilt axis using the correponding local Δz values

CTF correction: 3D

Correction of the 2 focus gradients - tilt

- thickness

Turonova et al (2017) J. Struct. Biol. 199, 187-195

Jensen & Kornberg (2000) Ultramicroscopy, 84, 57-64 Kunz & Frangakis (2017) J. Struct. Biol. 197, 114 Turonova et al (2017) J. Struct. Biol. 199, 187-195

3D CTF correction

Jensen & Kornberg (2000) Ultramicroscopy, 84, 57-64 ; Turonova et al (2017) J. Struct. Biol. 199, 187-195

3D CTF correction

Disc #1 x=0nm, z=0nm Disc #2 x=0nm, z=250nm Disc #3 x=500nm, z=0nm

Turonova et al (2017) J. Struct. Biol. 199, 187-195

3D CTF correction

CTF model using defocus estimates for each particle in all images of the tilt series

Bharat et al., 2015, Structure 23, 1743–1753

Tomogram reconstruction

- Image alignment
- Reconstruction: WBP, iterative methods
- Tomogram visualisation

Objective: determine and correct the shift, scale, in-plane rotation and tilt angle

Coarse alignment (cross-correlation)

• Tracking of high contrast fiducial markers: gold nanoparticles (10 nm)

Detect fiducial markers (manual/automatic)

• Fiducial less alignment "patch tracking" methods correlation-based, possibly iterative

Generation of fiducial (patch) projection model

Bacteriophage T5 (80 nm) + gold NP (10 nm)

Image alignment: patch tracking methods

Image alignment: patch tracking methods

- Size of patches
- Break contours into pieces (series of overlapping contours)

Objective: determine and correct the shift, scale, in-plane rotation and tilt angle

Coarse alignment (cross-correlation)

• Tracking of high contrast fiducial markers: gold nanoparticles (10 nm)

Detect fiducial markers (manual/automatic)

• Fiducial less alignment "patch tracking" methods correlation-based, possibly iterative

Generation of fiducial (patch) projection model

Trajectory prediction & difference minimization

Image alignment

aligned series

acquired series

Alignment with fiducial markers

YΖ

Alignment by simple correlation

Tomogram reconstruction

Back Projection

Fourier space partially an inhomogeneously filled

Weighted Back Projection (WBP)

b. Using many views

Tomogram reconstruction

Virtual slices 0.218 nm

Tomogram visualisation

Tomogram visualisation

Virtual slices

Tomogram visualisation

Softwares...

imod Tom toolbox SerialEM UCSF Tomography TomoJ emClarity Μ W Xmipp Protomo CTFFIND4 EMAN2 AreTomo MBIR NovaCTF Dynamo Relion Chimera

.

Tilt series acquisition Motion correction Tilt series alignment CTF determination CTF correction Tomogram reconstruction Particle picking Subtomogram averaging

Conclusions & perspectives

- Missing information
- Tilt series acquisition (electron dose, acquisition schemes)
- CTF-correction (2D, 3D)
- Alignment
- Tomogram reconstruction
- Tomogram visualization
- Segmentation
- Sub-tomogram averaging (STA)

C Denoising Restauration of missing information

Cellular cryo-EM

A few references

• Chen M, Bell JM, Shi X, Sun SY, Wang Z and Ludtke SJ (2019) A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods 16, 1161–1168.

• Penczek P, Marko M, Buttle K and Frank J (1995) Double-tilt electron tomography. Ultramicroscopy 60, 393–410.

• Turk, M., & Baumeister, W. (2020). The promise and the challenges of cryo-electron tomography. *FEBS letters*, *5*94(20), 3243-3261.

• Wan, W. and Briggs, J.A.G., "Cryo-electron tomography and subtomogram averaging" (2016) Methods in Enzymology, 579, 329-367

• Pyle, E., & Zanetti, G. (2021). Current data processing strategies for cryo-electron tomography and subtomogram averaging. *Biochemical Journal*, 478(10), 1827-1845.

• Danev R, Baumeister W. (2017) Expanding the boundaries of cryo-EM with phase plates. *Curr Opin Struct Biol.* 46:87-94. doi: 10.1016/j.sbi.2017.06.006.

• Tegunov, D., Xue, L., Dienemann, C., Cramer, P., & Mahamid, J. (2021). Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. *Nature Methods*, *18*(2), 186-193.

• Turoňová, B., Hagen, W. J., Obr, M., Mosalaganti, S., Beugelink, J. W., Zimmerli, C. E., ... & Beck, M. (2020). Benchmarking tomographic acquisition schemes for high-resolution structural biology. *Nature communications*, 11(1), 1-9.

Grant Jensen's lectures https://www.youtube.com/playlist?list=PL8_xPU5epJdctoHdQjpfHmd_z9WvGxK8-