

Cryo Electron Microscopy of tissues and cells

Amélie Leforestier

Laboratoire de Physique des Solides CNRS, Université Paris Sacaly, Orsay

VITRIFICATION of massive specimens

THINNING specimens (electron lucent)

IMAGING dense & heterogeneous media

- a new cellular landscape
- 3D structure: cryo-tomography
- targetting molecules of interest

EXAMPLE

• nucleosomes and chromatin structure in the interphase nucleus

OTHER CRYO-IMAGING METHODS

- cryo-STEM
- cryo-X ray microscopy

Water, ice and glass

Dubochet et al, 1988 Studer et al, 2001 Vanhecke et al, 2007

metastable

(kinetically stable, non-aging, non-crystallizing)

Cooling rate > crystallisation

 $\Delta T = T_{ho} - T_{g}$

1 bar	10 ⁶ Ks ⁻¹	104 Ks-1
2045 bars	10 ⁴ Ks ⁻¹	10 ² - 10 ³ Ks ⁻¹

Water, ice and glass

Studer et al, 1995

• Water & biological specimens are poor thermal conductors

- Cooling rate depends on the distance from the surface
- Nucleation & growth of ice crystals in deep zones is an exothermic process, which in turn slows down cooling rate (Escaig, 1982)
 - Cooling rate depends on the specimen thickness

No pure water bulk vitrification Water content ≥ 80 %

	100 % water	70% water
1 bar	106 Ks-1	10 ⁴ Ks ⁻¹
2045 bars	10 ⁴ Ks ⁻¹	10 ^{2 -} 10 ³ Ks ⁻¹

Water, ice and glass

Studer et al, 1995

• Water & biological specimens are poor thermal conductors

- Cooling rate depends on the distance from the surface
- Nucleation & growth of ice crystals in deep zones is an exothermic process, which in turn slows down cooling rate (Escaig, 1982)
 - Cooling rate depends on the specimen thickness

No pure water bulk vitrification
Water content ≥ 80 %

	100 % water	70% water
1 bar	106 Ks-1	10 ⁴ Ks ⁻¹
2045 bars	10 ⁴ Ks ⁻¹	10 ^{2 -} 10 ³ Ks ⁻¹

No pure water vitrification: need for cryo-protectants

- for samples with > 80% water content
- for samples thicker than 200 μm

Vitrification techniques

1 bar

Plunge Freezing ethane

1-3 µm

cell extensions, bacteria, picoeukaryotes

Vitrobot (Thermo), EMGP (Leica) Slam Freezing helium/nitrogen

10-20 µm

isolated cells, bacteria, peripheral tissues

2 types of slam-freezing machines (Leica (LN2), Reichert (LHe)) 2045 bar

High Pressure Freezing (HPF) nitrogen

100-200 μm

cells, tissues, organs, organisms

2 type of HPF machines (Leica EMPACT, ICE)

Problems ?

Vitreous does not mean the native state is preserved !

"Phase diagram" of amorphous water

Voyage through water poly(a)morphs ?

Problems, ... and perspectives ?

✓ Transitions upon pressure changes
 ✓ Transitions upon temperature changes
 ✓ Transitions upon beam irradiation

Check the state of water of your sample !

Possible relationships between pressure-amorphized ice, deeply supercooled liquid and supercooled liquid water.

Check the state of water of your sample !

Cubic ice

Dubochet, Quart. Rev. Biophys. 21, 2 (1988)

Obtaining a thin (electron lucent) specimen

lon

Column MILLING

 $T < -140^{\circ}$

Cryo-sectioning Cryo-FIB milling Cryo-Electron Microscopy Of Vitreous Sections Al-Amoudi et al, 2006 En -~R.0/ vitrified cells ~~ KI \// 1. nn < 2-300 nm SEM T < -140° sample Electron Column IMAGING knife EM gr

GIS

vitreous specimen

lectrons

gallium

Device

J. Plitsko (Villa et al, 2013)

Coutesy M. Eltsov, IGBMC

1 mm

Cryo-FIB milling

J. Plitsko (Villa et al, 2013)

Cells deposited/cultured on grids

Cryo-FIB milling: targeting ROI

Gorelick, S., Buckley, G., Gervinskas, G., Johnson, T. K., Handley, A., Caggiano, M. P., ... & de Marco, A. (2019). PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. *Elife*, *8*, e45919.

Cryo-FIB milling: multicellular tissues & organisms

the « lift out » method

Mahamid et al (2015) J. Struct. Biol. 192, 262-269 Hsieh et a (2014) J. Struct. Biol, 185, 32-41, 2014 Harapin et al (2015) Nature methods, 12, 634-636. Schaffer et al (2019). A Nature methods, 16(8), 757-762.

CEMOVIS

D. Studer et al (2014) J. Struct. Biol. 185, 125

https://www.youtube.com/watch?v=d3tHAWde1GQ

CEMOVIS

D. Studer et al (2014) J. Struct. Biol. 185, 125

Synaptotagmin GFPlabelled Drosophila brain

https://www.youtube.com/watch?v=d3tHAWde1GQ

Sartori et al (2001) J. Struct. Biol. 134, 76-81

Leforestier et al, Biophys. J., 2001; Eltsov et al, NAR, 2018

Pros & cons

Cryo-sectioning versus cryo-FIB milling?

Technically demanding	YES	NO (?) / YES for tissue
Surface artifacts	YES crevasses (e ≥ 75nm)	(YES)
Bulk artifacts	YES compression	NO
Serial sections	YES	NO
Surface of observation	50 x 150 μm	10 x 20 μm
Sample thickness	30 -300 (3000) nm	>100-150 nm
Imaging problems	YES flatness adhesion section-support	NO orientation for tomography

Pros & cons

Cryo-sectioning versus cryo-FIB milling?

Technically demanding	YES	NO (?) / YES for tissue
Surface artifacts	YES crevasses (e ≥ 75nm)	(YES)
Bulk artifacts	YES compression Vibrating knifes?	NO
Serial sections	YES	NO
Surface of observation	50 x 150 μm	10 x 20 μm
Sample thickness	30 -300 (3000) nm	>100-150 nm
Imaging problems	YES flatness adhesion section-support New support films?	NO orientation for tomography

A new cellular landscape

snapshots of molecular landscapes

1 µm____

Structural biology in situ ?

Drosophila brain, CEMOVIS

3D structure ? SPA ?

3D structure by cryo-electron tomography

- Tilt series acquisition (electron dose, acquisition schemes)
- CTF-correction (2D, 3D)
- Alignment
- Tomogram reconstruction

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82-96

3D reconstructed volume

3D cellular (& molecular) organisation ?

• segmentation

High resolution 3D structure of macromolecules ?

• sub-tomogram averaging

Identification & targetting molecules of interest ?

- template matching
- electron dense labels
- correlative microscopy

Delarue et al (2018) mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. *Cell* **174** 338-349.e20

Tomogram segmentation

manual, automatic, semi-automatic, machine learning, ...

Golgi apparatus from *C. reinhardtii*.

With cis (green), medial (magenta), and trans (blue) cisternae, COPI vesicles, endoplasmic reticulum (yellow), trans Golgi network (purple), and two nuclear pore complexes, ribosomes, and other membranes (gray).

Sub-tomogram averaging

Wan, W., & Briggs, J. A. G. (2016). Cryo-electron tomography and subtomogram averaging. In *Methods in enzymology* (Vol. 579, pp. 329-367). Academic Press

Sub-tomogram averaging

EMDB resolution statistics (STA)

🔶 Highest 🛛 🔶 Average 🚽 Lowest

Ribosome (*Mycoplasma pneumoniae*)

Tegunov et al NATURE METHODS | VOL 18 | FEBRUARY 2021 | 186-193 |

Template matching

Förster, Han, & Beck (2010) Visual propteomics. Meth. Ennzymol, 483 Beck et al (2009) Nat Methods. 2009 6(11): 817–823.

« Molecular sociology »

W. Baumeister, MPI, München

Sub-tomogram averaging

Mahamid et al (2016). Molecular sociology at nuclear periphery. Science, 351

Sub-tomogram averaging + template matching

Delarue M, et al (2018) mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 174 338-349.e20

Electron dense clonable labels

for localisation of macromolecules in the cellular context?

Proof of concept **metallothionein**

Mercogliano & De Rosier, 2004 Bouchet Marquis et al, 2012 Hirabayashi et al, 2014

- toxicity
- endogeneous metallothioneins

Cryo-CLEM 0 Bharat et al., 2018, Structure 26, 879-886 June 5, 2018 © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd. https://doi.org/10.1016/j.str.2018.03.015

Cryo correlative light and electron microscopy for localisation of macromolecules in the cellular context

Cryo-Electron Microscopy

Purified molecules in solution

Freezing

Molecules in cells

Freezing

Thinning

Imaging

CTF correction

Imaging: tilt series

CTF correction

Tomogram reconstruction

 SPA

STA

Target/detect molecule of interest

Current challenges & developments

Current challenges & developments

TOMOGRAPHYNoise
Alignment
Missing wedgeDeep learningCryo-CARE (Buchholz et al (2019)
Warp/M (Tegunov et al (2019, 2020)
MBIR (Yan net al, 2019)
LoTTor (Zhai et al, 2020)
Isonet (Liu et al, 2021)

Small fraction of cellular volume (targeting rare events)

Super resolution cryo-CLEM

Small field of view (high resolution STA)

Montage (tessellated) cryo-ET

Detection and identification of macromolecular complexes (unknown, rare, < 400 kD)

Template-free detection and classification
 Xu, M., Singla, J., Tocheva, E. I., Chang, Y. W., Stevens, R. C., Jensen, G. J., & Alber, F. (2019). De novo structural pattern mining in cellular electron cryotomograms. Structure, 27 (4), 679-691.
 Martinez-Sanchez, A.,... & Lučić, V. (2020). Nature methods, 17 (2), 209-216.
 ER membrane-associated complexes

Limitation: access to small subcellular regions only

Cryo-EM	30-300 nm	< 1 nm
Cryo-STEM	0.5-2 μm	10nm
Cryo soft X-ray	1-10 µm	20-70 nm

Soft X-ray cryo-microscopy / tomography

carbon and nitrogen absorbs photons at an order of magnitude more than water

absorption correlates linearly with thickness and concentration => quantitative

```
• Penetration: 10–15µm
```

• Depth of field: 2-3 µm through-focus acquisition

Chemical imaging (Ca, C, As,)

Soft X-ray cryo-microscopy / tomography

Dermott & Larabell (2009) Trends in Cell Biology Schneider et al (2010) Nature methods Groen, J., Conesa, J. J., Valcárcel, R., & Pereiro, E. (2019) Biophysical reviews, 11, 611.

Leforestier et al, J. Struct. Biol, 2014

Imaging synapses of the MB of Drosophila brain by cryo-TXM / cryo-TEM

Leforestier A., L. Michot, P. Levitz, T. Przat, P. Tchenio (2014) J. Struct. Biol.

Distance (nm)

EXAMPLE

Nucleosomes conformation and organisation in the eukaryotic interphase nucleus

Mikhail Eltsov IGBMC, Illkirch

Diana Grew Buchmann Institute, Frankfurt Slavica Jonic IMPMC, Paris Mohamad Harastani IMPMC, Paris

Nucleosomes and chromatin imaging in the cellular context

MW 200 kD

10.5 nm

Cryo-ET of vitreous sections of the interphase cell nucleus

Tilt series

Reconstructed tomogram

Can we visualise the nucleosome in its cellular context ?

Eltsov et al, NAR 2018

Simulation of cryo-EM nucleosomes electronic electronic

electron density map

Can we visualise the nucleosome in its cellular context ?

A left-handed DNA superhelix

in situ

Can we visualise the nucleosome in its cellular context ?

The nucleosome conformation in interphase nucleus is more open than the crystallographic structure.

P-distance between DNA gyres (nm)

Characterisation of nucleosome conformation

Conformational variability

HEMNMA 3D

Hybrid Electron Microscopy Normal Mode Analysis

- deformation of the reference model using normal mode analysis
- search for amplitude and modes that matches each particle
- \Rightarrow space of conformations
- sub-tomogram averaging within clusters
- trajectories

Thank you for your attention !

A few references

- Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W., & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. *Quarterly reviews of biophysics*, 21(2), 129-228.
- Turk, M., & Baumeister, W. (2020). The promise and the challenges of cryo-electron tomography. FEBS letters, 594(20), 3243-3261.

CEMOVIS

• Al-Amoudi, A., Chang, J. J., Leforestier, A., McDowall, A., Salamin, L. M., Norlen, L. P., ... & Dubochet, J. (2004). Cryo-electron microscopy of vitreous sections. *The EMBO journal*, 23(18), 3583-3588.

• Eltsov, M., Grewe, D., Lemercier, N., Frangakis, A., Livolant, F., & Leforestier, A. (2018). Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. *Nucleic acids research*, *46*(17), 9189-9200.

Dubochet, J., Zuber, B., Eltsov, M., Bouchet-Marquis, C., Al-Amoudi, A., & Livolant, F. (2007). How to "read" a vitreous section. *Methods in cell biology*, *79*, 385-406.
Hsieh, C. E., Leith, A., Mannella, C. A., Frank, J., & Marko, M. (2006). Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. *Journal of structural biology*, *153*(1), 1-13.

• Sader, K., Studer, D., Zuber, B., Gnaegi, H., & Trinick, J. (2009). Preservation of high resolution protein structure by cryo-electron microscopy of vitreous sections. *Ultramicroscopy*, 110(1), 43-47.

• Pierson, J., Fernández, J. J., Bos, E., Amini, S., Gnaegi, H., Vos, M., ... & Peters, P. J. (2010). Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box. *Journal of structural biology*, *169*(2), 219-225.

VITRIFICATION

- Studer, D., Graber, W., Al-Amoudi, A., & Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing. *Journal of microscopy*, 203(3), 285-294.
- Studer, D., Michel, M., Wohlwend, M., Hunziker, E. B., & Buschmann, M. D. (1995). Vitrification of articular cartilage by high-pressure freezing. Journal of microscopy, 179(3), 321-322.
- Vanhecke, D., Graber, W., & Studer, D. (2008). Close-to-native ultrastructural preservation by high pressure freezing. *Methods in cell biology*, 88, 151-164.

CRYO-FIB Milling

• Villa, E., Schaffer, M., Plitzko, J. M., & Baumeister, W. (2013). Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. *Current opinion in structural biology*, 23(5), 771-777.

• Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L. K., ... & Baumeister, W. (2016). Visualizing the molecular sociology at the HeLa cell nuclear periphery. *Science*, 351(6276), 969-972.

• Schaffer, M., Pfeffer, S., Mahamid, J., Kleindiek, S., Laugks, T., Albert, S., ... & Plitzko, J. M. (2019). A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. *Nature methods*, *16*(8), 757-762.

CRYO-CLEM

•Bharat, T. A., Hoffmann, P. C., & Kukulski, W. (2018). Correlative microscopy of vitreous sections provides insights into BAR-domain organization in situ. *Structure*, *26*(6), 879-886.

• Tuijte MW, Koster AJ, Jakobs S, Faas F & Sharp TH (2019) Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Scientific Reports 9:1369