

Approches complémentaires pour l'analyse des interactions moléculaires.

Alain ROUSSEL

Ecole Nationale de Biologie Structurale Intégrative

> Juin 2019 Ile d'Oléron

Association: how fast molecules bind = k_{on} (M⁻¹s⁻¹)

$$A + B \stackrel{k_{on}}{\underset{k_{off}}{\longrightarrow}} AB$$

Dissociation: how fast complexes fall apart = k_{off} (s⁻¹)

Binding kinetics

Association: how fast molecules bind = $M^{-1}s^{-1}$

Dissociation: how fast complexes fall apart = s^{-1}

Equilibrium

forward binding = backward unbinding

 $k_{on}[A][B] = k_{off}[AB]$

Equilibrium dissociation constant

 $K_{D} = [A][B] / [AB] = k_{off} / k_{on}$

Same Affinity ... Different Kinetics

Thermodynamic parameters

$\Delta G = RT \ln(K_D)$

$\Delta G = \Delta H - T \Delta S$

ΔG : Change in free (Gibbs) energy

ΔH: Change in enthalpy.

It is a measure of the hydrogen bonds and van der Waals contacts involved in the interaction.

Can be measured as heat exchange

ΔS : Change in entropy.

Change in 'chaos': Change in mobility/rigidity conformational changes, solvation (hydrophobic sites)

R is the ideal gas constant, T is the temperature in the Kelvin scale

Affinity is just part of the picture

All three interactions have the same binding energy (ΔG)

Binding equilibria and free energy

	Common language	K _d (M)	K _a (M ⁻¹)	∆G° (kJ/mol)	∆G° (kcal/mol)
$\Delta G = RT \ln(K_D)$	No affinity (high millimolar)	> 1 0 ⁻¹	< 10 ¹	> -5.9	> -1.4
Biologically relevant	Very weak affinity (low millimolar)	10 ⁻³ to 10 ⁻¹	10 ¹ to 10 ³	-18 to -5.9	-4.3 to -1.4
interactions	Low affinity (high micromolar)	10 ⁻⁵ to 10 ⁻³	10 ³ to 10 ⁵	-30 to -18	-7.1 to -4.3
generally have ΔG	Moderate affinity (low micromolar)	10 ⁻⁶ to 10 ⁻⁵	10 ⁵ to 10 ⁶	-36 to -30	-8.5 to -7.1
of -5 to -10 kcal/mol.	High affinity (nanomolar)	10 ⁻⁹ to 10 ⁻⁶	10 ⁶ to 10 ⁹	-53 to -36	-13 to -8.5
	Very high affinity (pico/femtomolar)	10 ⁻¹⁴ to 10 ⁻⁹	10 ⁹ to 10 ¹⁴	-83 to -53	-20 to -13
	Effectively irreversible (low femtomolar)	< 10 ⁻¹⁴	> 10 ¹⁴	< -83	< -20

Strength (kcal/mole)*

Biologically relevant interactions use multiple noncovalent interactions to obtain the required affinities.

of

Bond Type	Length (nm)	In Vacuum	In Water
Covalent	0.15	90	90
Ionic	0.25	80	3
Hydrogen	0.30	4	1
van der Waals attraction (per atom)	0.35	0.1	0.1

Molecular Biology of the Cell (NCBI bookshelf)

Techniques available at the AFMB

Techniques (in order of apparition at the AFMB)	N:M	ΔΗ/ΔS	KD	k _{on} /k _{off}	Stability
FP (Fluorecence)	YES	no	YES	no	yes
TSA (Thermal Shift Assay)	no	no	yes?	no	YES
SPR (Surface Plasmon Resonance)	yes	yes	YES	YES	-
MALS (Multi-Angle Light Scattering)	YES	no	no	no	-
ITC (Isothermal Titration Calorimetry)	YES	YES	YES	yes	-
MST (Microscale Thermophoresis)	yes	yes	YES	no	-
BLI (Bio-Layer Interferometry)	yes	no	YES	YES	-

Other: gel shift, native gel, chromatography, DLS, CD, AUC, Hold-up...

GE Healthcare

Isothermal Titration Calorimetry

MicroCal ITC 200

ITC

What happens during an ITC experiment?

Protein target in sample cell

Compound (binding partner) in syringe

Titrate the compound into the protein

Measure the power needed to keep the experiment and reference cells at the same temperature (DP)

The heat provided is proportional to the ΔH and to the amount of complex formed

Endothermique reaction

→ Heat absorbed in sample cell

 \rightarrow extra energy will be provided in order to keep Δ T=0

Exothermique reaction

→ Heat released in sample cell

 \rightarrow less energy will be provided in order to keep $\Delta T=0$

- Each peak corresponds to one injection
- During the titration the signal gets smaller because there is less protein available for binding to the ligand
- The area under the peaks is calculated (heat in $\mu cal)$ and converted to kcal/mol of injectant ($\Delta H)$

Each enthalpy point is plotted against the ratio of [ligand]:[protein]

Data points are fitted according to binding models

 ΔH , n and K_D are calculated from the fitting

 ΔG and ΔS are derived from the equations:

$$\Delta G = RT \ln K_D$$

 $\Delta G = \Delta H - T\Delta S$

Endothermique

Exothermique

Micro Scale Thermophoresis

Monolith NT.115

What is Thermophoresis?

Electrophoresis:

We apply an electric field We separate the molecules by charge (and also size)

Thermophoresis:

Sample is in solution in a capillary An infrared laser generates a temperature gradient (between 1-6 K) **Thermophoresis is the motion of molecules in temperature gradients**.

Movement is detected by through fluorescence of one of the binding partners.

Thermophoresis depends on size, charge, solvation entropy and conformation of the molecule.

Thermophoresis experiment

- 16 capillaries

Depending on the level of complexation, the labelled molecules will move differently on the temperature gradient.

Thermophoresis will depend on size + charge + hydration shell + conformation

Coming out: Nanopedia 2018, page 42

IR-laser induced temperatures

This table summarizes the MST-on times at different <u>MST powers</u> at which a temperature increase Δ T of 10 K is exceeded. At timepoints earlier than the ones noted in the table, the temperature increase is time-dependent but always lower than 10 K. Therefore an MST-on time of 1.5 seconds usually means a temperature increase of only few K. Note that the temperature increase is always less than 10 K at low MST power.

MST power	Low	Medium	High
MST-on time (∆T<10 K)	-	5 sec	2.5 sec

- This means a massive temperature change with higher MST powers and longer on-times!
 - K_D is a temperature-dependent parameter
 - Protein structure will be affected
- In addition, ligand, buffer ions, salt ions etc. also perform thermophoresis: pH, ionic strength etc. change!

Stephan Uebel, Biochemistry Core Facility

Dr. Stephan Uebel, Max-Planck-Institute of Biochemistry, Martinsried, Germany

Rest in Peace, Thermophoresis

Temperature Related Intensity Change TRIC

- An effect where the fluorescence intensity of a fluorophore is temperature dependent
- Extent of temperature dependence is strongly related to the chemical environment of the fluorophore, which can be affected by binding of a ligand to the target

Temperature Related Intensity Change TRIC

 Changes in chemical environment are caused by proximity of ligand or conformational change

Temperature Related Intensity Change TRIC

Change in fluorescence intensity is plotted over time

TRIC - Summary

 Binding events are detected by measuring changes in fluorescence intensity

TRIC - Binding Isotherm

Response amplitude is used to build binding isotherm

The fluorescent partner must be monodisperse and should not stick to the capillaries

In most cases you will need to add additives to the buffer: detergent (0.05% Tween 20) BSA, L-arginine, glycerol...

Ionic force and pH must be adapted to the interaction

Chose the right type of capillary: standard, coated (hydrophilic, hydrophobic)

GE Healthcare

Surface Plasmon Resonance

Biacore T200

SPR

Physical phenomenon: Surface plasmon resonance

SPR machine detects refractive index changes close to the sensor surface

On the sensor surface we will immobilize one of the components (LIGAND) The other component (ANALYTE) will be injected in a continuous flow.

Binding of the analyte will change the refractive index near the surface, this change will generate a resonance signal that will be measured in real time and represented in a sensorgram

A sensorgram represents the resonance signal (in resonance units RU) as a function of time. This response is proportional to the mass retained near the surface

Sensor Chips and flow cells

Different types of sensor chips

CM5 (carboxymethyl-dextran) Coupling via -NH2, -SH, -CHO, -OH or -COOH

L1 (immobilization of membrane structures) SA (immobilization of biotylilated molecules)

NTA (binding of Ni²⁺/ his-tagged proteins)

Typical binding kinetic's experiment

Example of binding

How to set up an SPR experiment?

Ligand Immobilization

- Choice of Immobilization chemistry (covalent, via a His-tag, biotin/ streptavidine)
- Stability of ligand
- Level of immobilisation (enough but not too much...)

Kinetic analysis: immobilize low amount of ligand to avoid rebinding of analyte during dissociation

Analyte Binding

- Choice of running buffer (pH, ionic strength, detergent ...)
- MW of the analyte (small molecules may be difficult to analyse)
- Availability of the analyte

Regeneration

- Regeneration solution (ligand/analyte-dependent): detergent, pH, salt...
- Stability of the ligand

BLI

Bio-Layer Interferometry

Octet Red 96

Optical interferometry

A light wave has a wavelength, amplitude and direction.

When two light waves interact the result of the interaction depends on the phase and amplitude of the waves.

http://www.biapages.nl

Phase difference and optical path difference

http://www.biapages.nl

Bio Layer Interferometry

When molecules bind to the sensor the interferometric pattern shifts to the right and when molecules dissociate the interferometric pattern shifts to the left.

http://www.biapages.nl

Dip and Read[™] Biosensors

Direct immobilisation: amine coupling, biotin intercation with streptavidin

Capture-based approach: high affinity capture antibody (anti-FC, anti-His) or use of known motif or tag (protein A, Ni NTA)

Typical binding kinetic's experiment

Example of binding

Time (s)

L = Ligand, A = Analyte, R = Response k_a = association rate constant, k_d = dissociation rate constant K_D = affinity constant

Data analysis: Association

Data analysis: Dissociation

Dissociation rate equation

 $\frac{dR}{dt} = -k_d \cdot R$

Time to 5% dissociation

k _d	Time	Time				
(s ⁻¹)	(min)	(hour)				
1. 10 ⁻¹	0.0	0.0				
1. 10 ⁻²	0.1	0.0				
1. 10 ⁻³	0.9	0.0				
1. 10 ⁻⁴	8.5	0.1				
1. 10 ⁻⁵	85.5	1.4				
1. 10 ⁻⁶	854.9	14.2				

The dissociation curve should decrease at least 5% before analysis is attempted.

$$Y = Y_0 + Ae^{-k_d * t}$$

equation used to fit

Y = level of binding, A is an asymptote

Example of tight binding model 1:1

														Residua	l View													
E	0	eellestereelleenteel Maria Station (sension	nagyar thail Sana (Casa) Agusar (Casa)			Maria and an and an		(h) Tableton Spilologia	nlaa halanna koo Ara halanna pija	ll Anny Altan Anna Antonia	d Chan aide Le.	hiyan dagar waxa waxay	laste dia basal Inggana katika	ر ایروز بالارمیار در مرجو با باله	ر کار کار کار می انگانی و مقادر و از در انگانی	in equipment data	nations publications participations (1911)	a de expression A pression de esta	ulia, ay lawad wa jia katao at	ang	tertos gandelan Inggangtantes	and an and a second	Daha Johan Mang Program	anna <mark>anna an</mark> Lanna anna anna anna anna anna anna ann	anna Allaigh Martin Allaigh		ndalahkanadal aktor periodal	
-0.0	1 -					With the second second	4 1 1 1 1	_																				_
										1																		
	0	200	400	600	800	1000	1200	1400	1600 1	800 2	2000 2	200	2400	2600 Time (2800 sec)	3000	3200	3400	3600	3800	4000	4200	4400	4600	4800	5000	5200	

Dissoc. Loc.	Conc. (nM)	Response	KD (M)	KD Error	kon(1/Ms)	kon Error	kdis(1/s)	kdis Error	Rmax	Rmax Error	kobs(1/s)	Req	Req/Rmax(%)	Full X^2	Full R^2
A4	15	0.3026	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.3008	0.0001	2.847E-03	0.3002	99.8	0.271485	0.999259
B4	7.5	0.2608	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.2792	0.0001	1.427E-03	0.2781	99.6	0.271485	0.999259
C4	3.75	0.1975	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.2688	0.0002	7.163E-04	0.2666	99.2	0.271485	0.999259
D4	1.87	0.1355	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.2839	0.0002	3.602E-04	0.2792	98.3	0.271485	0.999259
E4	0.93	0.0719	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.2667	0.0003	1.821E-04	0.258	96.7	0.271485	0.999259
F4	0.46	0.0327	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.2451	0.0004	9.307E-05	0.2294	93.6	0.271485	0.999259
G4	0.23	0.0312	3.133E-11	<1.0E-12	1.894E05	1.823E02	5.935E-06	7.896E-08	0.4267	0.0007	4.950E-05	0.3755	88.0	0.271485	0.999259

KD (nM)	Kass(M ⁻¹ s ⁻¹)	Kdiss(s ⁻¹)
0.031	1.89 x 10 ⁵	5.9 x 10 ⁻⁶

Example of very tight binding model 1:1

Data analysis: Steady state

Steady state equation $\frac{k_d}{k_a} = \frac{[L][A]}{[LA]} = K$

Approximate calculated time required to reach 99.9% steady state at analyte concentrations ranging from 0.01 to 100 times KD)

concentration analyte	<i>k</i> d (s ⁻¹)					
	10-1	10 ⁻²	10 ⁻³	10-4		
0.01 x <i>K</i> _D	68 s	11.5 min	115 min	1140 min		
0.1 x <i>K</i> _D	63 s	10.5 min	105 min	1047 min		
1 x <i>K</i> D	34 s	5.8 min	57 min	576 min		
10 x <i>K</i> _D	6 s	1 min	10.5 min	1105 min		
100 x <i>K</i> _D	1 s	0.1 min	1 min	11 min		
$k_{\rm a} = 1.10^5 \ {\rm M}^{-1} {\rm s}^{-1}$						

Data analysis: models

bivalent analyte

mass transfer

http://www.biapages.nl

Data analysis: models

Model shopping is not the proper way to fit the data.

https://www.sprpages.nl/

Example from the literature

С

Kinetics of the interaction between KRAS and 0375-0604 by BLI

Κ _D (μΜ)	k _{on} (1/Ms)	$k_{dis}(1/s)$
92	2.9×10 ⁺⁰³	2.6×10 ⁻⁰¹

ITC	MST	SPR	BLI
Affinity Thermodynamics	Affinity	Affinity Kinetics	Affinity Kinetics
Interaction in solution No labeling is required No limit on molecular weight	Easy to use No limit on molecular weight	Low sample amount Measure in any buffer (No) limit on molecular weight	Fast and Easy to use Measure in any buffer (culture media) (No) limit on molecular weight
Big amount of protein High sample concentration Buffers must match excatly	Interaction capillaries The labelled protein must be really monodisperse	Microfluidics Ligand immobilisation Regeneration Non specific interaction with sensor chip	Ligand immobilisation (Regeneration) Non specific interaction with bio sensor surface
Cost ≈ 100k€ No maintenance	Cost ≈ 90k€ No maintenance	Cost ≈ 300k€ Expensive maintenance	Cost ≈ 200k€ No maintenance
Fragile syringe	Capillaries	Sensor chips	Bio-sensors

Which one is the best?

It depends on:

- The question you want to answer
- The amount of material you have
- Time...

They all have advantages et disadvantages

Very important

be aware of the limitations

never try to over-interpret your results

How much protein do I need?

For all techniques

Purity is crucial for obtaining quantitative reliable results.

« Real » concentration must be measure as accurately as possible

ITC Protein 300 μ l concentration= 10 x K_D Ligand 60 μ l concentration = 100 x K_D

Biacore Ligand, depends on immobilisation 50-400 nM, 100 μ l Analyte, titration between 0.1 and 10 x K_D Quantity depends on contact time

Thermophorèse Labeled protein 100 μ l 20 μ M Ligand 20 μ l concentration = 40-50 x K_D

BLI Ligand, depends on immobilisation 50-400 nM, 200 μ l Analyte, titration between 0.1 and 10 x K_D, 200 μ l

Received: 16 September 2008, Accepted: 17 September 2008,

Published online in Wiley InterScience: 2008

(www.interscience.wiley.com) DOI:10.1002/jmr.928

Survey of the year 2007 commercial optical biosensor literature

Rebecca L. Rich^a and David G. Myszka^{a*}

Abstract:

In 2007, 1179 papers were published that involved the application of optical biosensors. We found a disappointingly low percentage of well-executed experiments and thoughtful data interpretation. We are alarmed by the high frequency of suboptimal data and over-interpreted results in the literature....

In fact, a problem in most of the published data we see is that the authors apparently did only one experiment; it looks like they walked up to the machine, chucked in their samples, and **published whatever data came out**.

Many users who generate poor-quality data are either **too ignorant** to recognize the problem **or too lazy** to want to fix it.