

New molecular tools for integrated structural biology.

Alain ROUSSEL

Ecole Nationale de Biologie Structurale Intégrative

> Juin 2019 Ile d'Oléron

Système de Sécrétion de Type 9

Type 9 secretion system structures reveal a new protein transport mechanism

Frédéric Lauber^{1,4}, Justin C. Deme^{2,3,4}, Susan M. Lea^{2,3*} & Ben C. Berks^{1*}

Methods: We constructed a strain of the gliding bacterium *Flavobacterium johnsoniae* in which the SprA protein was fused to a Twin-Strep tag to permit affinity purification.

PorV and Plug was co-purified with SprA. Heavy chain-only antibodies (HcAbs)

Heavy chain-only antibodies (HcAbs)

From Desmyter et al, COSB, 2015

Heavy chain-only antibodies (HcAbs)

Shark HcAb VNAR Children Camelid HcAb ZNAR VHH SNAR ANAR CH3 Ship VNAR VHĤ

Structure and key characteristics of the nanobody domain

Structure of nanobodies:

- ✓ monomeric Ig domain of ~120 residues
- ✓ one conserved disulphide bond
- ✓ framework mutations in residues involved in the VH-VL interaction (G49E, L50R)

Key characteristics of nanobodies:

✓ high affinity and specificity

(equivalent to conventional antibodies)

✓ high thermostability

✓ good solubility and strictly monomeric behavior

✓ small size (2.5 nm in diameter and about 4 nm in length; ~15 kDa)

- ✓ relatively low production cost
- ✓ ease of genetic engineering, format flexibility or modularity

✓ low immunogenicity, and a higher penetration rate into tissues

Duhoo et al, Acta Cryst F, 2017

nm

Extracellular vesicles (EVs) as a new platform to study cell surface protein structure and interaction with ligand

Vincent Delauzun PhD student

2019 / 05 / 22

Director : Dr A. Roussel

Membrane proteins

The challenging task of membrane protein purification

History of EVs

Number of publications indexed in PubMed key word "extracellular vesicles"

Christian de Duve 1917-2013 Nobel Prize 1974 Discovery of Lysosomes

EVs are everywhere

Every cells release vesicles in their environment

- Plasma
- Urine
- Milk
- Sweat
- Saliva
- Tears

From UKC Washington DC

What are EVs for ?

- Cell-to-cell communication
 - immune system
 - angiogenesis
 - inflammation
 - gene transfer
 - tumor growth
 - metastasis

- Cell adhesion
- Waste management

Classification of EVs

Charlotte Lawson et al, Journal of Endocrinology, 2016

Classification of EVs

Charlotte Lawson et al, Journal of Endocrinology, 2016

Biogenesis of EVs (microvesicles)

Guillaume Van Niel et al, Molecular Cell Biology, 2018

Pre-mRNA must be spliced to produce recombinant EVs

Cell Line (HEK293)

Transfection (Lipofectamine 2000)

Serum-free medium (Freestyle 293)

Expression time course (96 h)

Differential centrifugations (500 g / 3000 g / 10 000 g)

Ultracentrifugation 1 (110 000 g)

Ultracentrifugation 2 (washing step 110 000 g)

Size Exclusion Chromatography S200 10/300, 0.3 mL/min

Dynamic Light Scattering

gpEbola

gpEbola Δ Mucin

Catherine L. Hunt, Viruses, 2012

gpEbola

HEK293

Westernblot anti-gpEbola (Lama serum) anti-Lama HRP

Booth et al, Sci Rep 2017

Evs and phage display

Extracellular Vesicles: A Platform for the Structure Determination of Membrane Proteins by Cryo-EM

Tzviya Zeev-Ben-Mordehai,¹ Daven Vasishtan,¹ C. Alistair Siebert,¹ Cathy Whittle,¹ and Kay Grünewald^{1,*} ¹Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK

Structure 22, 1687-1692, November 4, 2014

3D EM Reconstruction of the Proteins on the Membrane

(A and B) Central and tangential slices through a tomogram of MPEEVs displaying gB (A) and EFF-1 (B). Scale bar represents 50 nm. (C and D) Isosurface representation of the subvolume reconstruction of gB with the trimer crystal structure (PDB: 2GUM) fitted (C) and EFF-1 (PDB: 4OJC) (D). Scale bar represents 5 nm. (E and F) Isosurface representations of the tomograms shown in (A and B). Scale bar represents 50 nm.

Transfer from EVs to nanodisc

