

Crystallographic X-ray data collection strategies How to get the most from your crystal ?

Dominique HOUSSET E-mail : dominique.housset@ibs.fr

23 juin 2019

Ecole d'Oléron 2019 - D. Housset

Starting point ...

- You just have placed your crystal on the head of the goniometer (on a inhouse diffractometer or at a synchrotron beamline)
 - > What should you do obtain the best 3D structural information out of your crystal ?

Ewald sphere

- The Ewald sphere tells you which reflections you will be collecting
 - Which part of the reciprocal space you will have access to ?

A wave is scattered when a node of the reciprocal lattice (indices h k l) touches the Ewald's sphere. The structure factor (amplitude F and phase ϕ) of the diffracted wave is : $E(\vec{s}) = N \sum_{i=1}^{n} f_{i} \exp[2i\pi(\vec{s}) + \vec{r}_{i}]$

$$F(\vec{s}) = N_{cell} \sum_{I} f_{J} . exp[2i\pi(\vec{s}).\vec{r}_{J}]$$

Rotating the crystal

- To obtain complete 3D information, the crystal is rotated
- In theory ...
 - The region of reciprocal space you have access to is the volume scanned by the Ewald sphere when it rotates around O
 - It is a tore, centrered in O
 - If you rotate the crystal by 360°, you will collect reflections corresponding to all the nodes included in tore
 - This technique of data collection is called the oscillation method or rotating crystal method
- In practice the resolution is also limited by :
 - > The size and shape of your detector : θ_{max} due to the experimental setup
 - > The sample that may not diffract strongly enough above a given resolution

Complete data

- Complete data at a given resolution in the reciprocal space
 - Reflections corresponding to nodes included in a sphere of radius 1/d, centred in O
 - \succ \neq from the tore
 - > Even if you rotate your crystal by 360°, you miss a region of the reciprocal space :
 - The one located close to the rotation axis
- To have access to all the reciprocal space, one should collect rotation crystallographic data with at least 2 different rotation axes
- **But**, you may have symmetries in the reciprocal space !

Fridel's law

- Fridel's law
 - > In the absence of anomalous dispersion:

 $F(\vec{s}) = \sum_{J} f_{J} \exp[2i\pi(\vec{s}), \vec{r}_{J}] \text{ with } f_{J} \text{ real (no anomalous dispersion)}$ $F(-\vec{s}) = F^{*}(\vec{s})$ $I(\vec{s}) = F(\vec{s}), F^{*}(\vec{s}) = F^{*}(-\vec{s}), F(-\vec{s}) = I(-\vec{s})$

- Since $\vec{s} = h \cdot \vec{a^*} + k \cdot \vec{b^*} + 1 \cdot \vec{c^*}$ we often note: I(hkl) = I(-h-k-l)
- ==> Centre of symmetry in the reciprocal space
- Only half of the sphere is required to get complete data

Symmetry in crystals => symmetry in reciprocal space

- Symmetries in crystals will induce symmetries in the diffraction pattern
 - > A quick look at symmetries within crystals

Crystalline systems

 There are only seven ways of paving the space in 3 dimension in a periodic manner:

Crystal system	Bravais lattice	Rotational symmetry	Cell parameters				
Triclinic	Р	none	a≠b≠c α≠β≠γ				
Monoclinic	P, C	2-fold axis (//b)	a≠b≠c α=γ=90°≠β				
Orthorhombic	P, C, I, F	3 2-fold (// a,b,c)	a≠b≠c α=β=γ=90°				
Tetragonal	P, I	4-fold (//c)	a=b≠c α=β=γ=90°				
Trigonal	P (R)	3-fold (//c)	a=b≠c α=β=90° γ=120°				
Hexagonal	Р	6-fold (//c)	a=b≠c α=β=90° γ=120°				
Cubic	P, I, F	3-fold (//diag)	a=b=c α=β=γ=90°				

Primitive or multiple cells ?

- A primitive cell contains one lattice point per cell
- A multiple cell contains more than one lattice point per cell
- All crystals can be described by a primitive cell
- One use a multiple cell only when it has a higher symmetry than the primitive one

Three types of multiple cells

- Lattice P : Primitive
 - > 1 node per unit cell: x, y, z
- Two faces centred, lattice C, B, A
 - > 2 nodes on the (b, c) face for the A-type
 - ➤ x, y, z & x, y+1/2, z+1/2
- Boby centred, lattice I
 - ➢ 2 nodes: x, y, z & x+1/2, y+1/2, z+1/2
- All faces centred, lattice F
 - ➢ 4 nodes : x, y, z; x+1/2, y+1/2, z; x+1/2, y, z+1/2; x, y+1/2, z+1/2

С

С

а

b

14 Bravais lattices

- Triclinic
- Monoclinic P,C
- Orthorhombic P,C,I,F
- Tetragonal
 P,I
- Rhombohedral R
- Hexagonal
 P
- Cubic P,I,F

Figure 3.13. The 14 Bravais lattices.

Space groups and chirality

- There are 230 space groups corresponding to the 230 manner to associate these symmetry elements with the different unit cells described by the 14 Bravais lattices.
- Macromolecules are chiral (L-aminoacids in protein): it cannot be superposed on its image by a mirror:

- mirror and center of symmetry are not allowed.
- Only **65 space groups** for biological macromolecules.

Symmetries and space group for protein crystals

- Symmetry operators are limited:
 - > Axes 2 or 2_1 (axe 2 plus translation of 1/2 along axis 2)
 - > Axes 3, 3_1 or 3_2 (axe 3 plus translation of 1/3 or 2/3 along axis 3)
 - > Axes 4, 4_1 , 4_2 or 4_3 (axe 4 plus translation of 1/4, 1/2 or 3/4 along axe 4)
 - Axes 6, 6₁, 6₂, 6₃, 6₄ or 6₅ (axe 6 plus translation of 1/6, 1/3, 1/2, 2/3 or 5/6 along axe
 6)

What are the consequence in the reciprocal space of symmetries in the real space ?

- A rotation or screw rotation axis of order n, parallel to a given direction in the real space will induce a rotation axis of same order, parallel to the equivalent direction in the reciprocal space.
 - > In space group $P2_1$, there is a screw rotation axis of order 2, along **b**
 - > => rotation axis of order 2 along b* in the reciprocal space
 - > In space group $P4_32_12$, there is a screw rotation axis of order 4, along c
 - > => rotation axis of order 4 along c^* in the reciprocal space

۶

 In P2₁ space group, what are the reflections equivalent (same intensity) by symmetry?

11 Laue classes in reciprocal space

 If the Fridel's law is valid (always, except for non-centrosymmetric crystal in the presence of significant anomalous dispersion)

Crystal System	Laue Class	Space Group	Nb of eq. Refl.
Triclinic	-1	P 1	2
Monoclinic	2/m	P 2, P 2 ₁ , C 2	4
Orthorhombic	mmm	$P222, P222_1, P2_12_12, P2_12_12_1, C222_1, C222, F222, I222, I2_12_12_1$	8
Tetragonal	4/m	P4, P4 ₁ , P4 ₂ , P4 ₃ , I4, I4 ₁ ,	8
	4/mmm	P422, P42 ₁ 2, P4 ₁ 22, P4 ₁ 2 ₁ 2, P4 ₂ 22, P4 ₂ 2 ₁ 2, P4 ₃ 22, P4 ₃ 2 ₁ 2, I422, I4 ₁ 22	16
Trigonal	-3	P 3, P 3 ₁ , P 3 ₂ , R 3,	6
	-3m	P 312, P 321, P 3 ₁ 12, P 3 ₁ 21, P 3 ₂ 12, P 3 ₂ 21, R 32	12
Hexagonal	6/m	$P6$, $P6_1$, $P6_5$, $P6_2$, $P6_4$, $P6_3$,	12
	6/mmm	$P622$, $P6_122$, $P6_522$, $P622$, $P6_422$, $P6_322$	24
Cubic	m3	P 23, F 23, I 23, P 2 ₁ 3, I 2 ₁ 3,	24
	m3m	P 432, P 4 ₂ 32, F 432, F 4 ₁ 32, I 432, P 4 ₃ 32, P 4 ₁ 32, I 4 ₁ 32	48

Impact of multiple cells and helical rotation axes?

Systematic extinction:

- Multiple unit cells
 - C: h + k = 2n
 - I: h+k+l=2n
 - F: h, k, l of same parity, i.e. h + k = 2n, k + l = 2n et h + l = 2n
- Helicoidal rotation axes
 - Axe 2₁ / a (h00) => h = 2n
 - Axe 6₁ / c (00l) => l = 6n
 - Axe 6₂ / c (00l) => l = 3n
 - Axe 6₃ / c (00l) => l = 2n
 - Axe 6₄ / c (00l) => l = 3n
 - Axe $6_5 / c$ (00l) => l = 6n
- In most cases, the space group can be determined form symmetry in the reciprocal space
- However, we can't distinguish between $P6_5$ and $P6_1$, ...

Collecting data: the oscillation method

Essential steps of data processing

- Several steps:
 - ➤ 1) Indexation
 - ≻ 2) Integration
 - ➤ 3) scaling & merging
 - ➤ 4) providing data statistics

Indexation in theory

- Localisation of bright, well define spots on several images
 - Determination of x,y coordinates and rotation angle φ for each spot; need for 100 1000 spots
- Calculation of coordinates in reciprocal space
 - > Calculation of $\vec{s_i}$ for spot i
 - > Each $\vec{s_i}$ vector should be a vector of the reciprocal lattice: $\vec{s_i} = h_i \cdot \vec{a^*} + k_i \cdot \vec{b^*} + l_i \cdot \vec{c^*}$
- Determination of difference vectors between reciprocal lattice points

 $\vec{s}_{ii} = \vec{s}_i - \vec{s}_i$ Advantage: the same vector is found many times: better precision

- Fitting of cell and orientation parameters on this sets of vectors
 - Determining a unit cell and an orientation matrix that can describe all these vectors by:

$$\vec{s}_{ij} = h_{ij} \cdot \vec{a^*} + k_{ij} \cdot \vec{b^*} + l_{ij} \cdot \vec{c^*}$$

- Cell parameters, orientation matrix, quality of fit between predicted and observed spots provided.
 - All spots on all images can be associated with its three indices h,k,l that define its position in the reciprocal space

Indexation in practice

- Unit cell axes and orientation matrix are determined
- Indices h,k,I are associated to each spots

Autoindexing Cell parameters a, b,c α , β , γ

Integration

- Since the position of each spots on each image is now known, the intensity is measured for all of them.
 - Background needs to be removed
 - Reflections splitted on more than on image are summed
 - > 3D profiles of reflections are calculated

3D Profile fitting

- A diffraction spot can present on several successive images
 - Several parameters impact the number of images on which a given diffraction spot is present:
 - Crystal mosaicity
 - Beam divergence
 - Distance from rotation axis
 - Wavelength dispersion
 - Oscillation range chosen for the data collection (0.05° to 1°)
 - If most spots are on more than one image, 3D (x,y,φ) is preferable

3 dimensionnal profiles with XDS

****	AVE	RAGE	Т	HRE	E-D	IME	NSI	ONAL	PROF	ILE	OF		694	15	STR	DNG	REF	LECTION	S ?	***	***					
0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	2	2	1	0	0
U A	U A	0	U A	U A	U L	U L	U A	0	0	0	0	U A	U L	0 T	U L	U A	U A	U 0	ย ค	U A	1	1 2	1	U A	U A	U A
0	0	0	0	0	0	0	0	0	0	0	0	1	2	1	0	0	0	0	0	1	5	q	4	0	0	0
õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	î	4	ī	õ	õ	õ	õ	õ	2	8	21	9	õ	õ	õ
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	4	8	4	0	0	0
0	0	0	0	0	Θ	0	0	0	0	Θ	0	0	0	0	Θ	0	0	0	0	Θ	1	1	1	Θ	0	Θ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	Θ	0	0	0	0	Θ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Θ
0	0	1	1	1	1	0	0	0	0	0	1	0	0	0	0	0	0	Θ	0	0	0	0	0	0	0	0
0	0	0	1	1	Θ	0	0	0	0	-1	0	1	1	1	0	0	0	0 -	1	0	1	1	0	0	0	Θ
-1	0	1	4	4	2	0	0	0	-1	Θ	2	6	7	3	1	0	0	-1	0	1	4	5	2	Θ	0	Θ
-1	0	3 1	3	27	11	1	0	0	-1	1	5	21	43	18	2	0	0	-1	0	4	16	29	11	1	0	0
-1	1	52	4	62	27	2	0	0	-1	1	8	391	100	42	3	0	0	-1	1	6	29	68	27	2	0	0
0	U Q	31	3	25	11	L 0	U A	0	-1	0	5	21	41	1/	2	0	0	-1	0	4	70 10	28	11	D L	U A	0
0	0	0	0 0	1	2 0	0 A	0 A	0	0	_1	_⊥ ∩	4) 1	1	0 1	1	0	-1	1	U N	1	2 1	1	1	1	0
õ	õ	õ	õ	Ō	õ	õ	õ	õ	õ	Ō	õ	ō	Ō	ō	ĭ	Ô	õ	0	ō	õ	Ō	î	î	î	ō	õ
~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~		~	~	~	~	~	~		~
U A	U A	0	U A	0	0	U A	U A	0	0	0	0	U A	U A	0	U A	U A	U A	U 0	ย ค	0	U A	0	0	U A	U A	U A
-1	õ	õ	1	2	1	õ	õ	õ	0 0	õ	õ	õ	õ	õ	ē.	ē.	õ	e e	ē.	õ	õ	õ	õ	õ	õ	õ
ō	õ	ž	6	10	4	õ	õ	õ	õ	õ	õ	ĭ	2	ĭ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ	õ
-1	0	3 1	1	23	9	0	0	0	0	0	1	2	4	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	2	6	10	3	0	0	0	0	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	Θ
0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0
0	0	T	1	1	1	1	0	0	0	0	1	1	1	0	0	0	0	0	U	1	1	0	0	0	U	U

23431 REFLECTION INTENSITIES INTEGRATED

Scaling & Merging

- 3) scaling & merging
 - > Determination of the symmetry in the reciprocal space
 - Scaling of all images based on background and then on symmetry related reflections

- Guess about the symmetry of the crystal
- Calculation of unique reflections from multiple measurements of symmetry related reflections
- 4) provide a file containing merged reflections and **data statistics**

Reflection file

• Amplitude of structure factor are calculated from intensities : I = F²

_											
	h	k	I	F	SIGF	DANO	SIGDANO	F(+)	SIGF(+)	F(-)	SIGF(-)
	0	0	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0	0	2	-1.00	0.00	-1.00	0.00	-1.00	0.00	0.00	0.00
	0	0	3	-1.00	0.00	-1.00	0.00	-1.00	0.00	0.00	0.00
	0	0	4	101.12	6.29	0.00	0.00	100.92	9.00	100.05	9.11
	0	0	5	5087.18	868.91	5087.18	868.91	5087.18	868.91	5004.75	871.44
	0	0	6	-1.00	868.91	-1.00	868.91	-1.00	868.91	5004.75	871.44
	0	0	7	-1.00	868.91	-1.00	868.91	-1.00	868.91	5004.75	871.44
	0	0	8	712.77	26.26	0.00	0.00	713.90	3 <mark>5.1</mark> 8	706.38	40.04
	0	0	9	251303.12	24365.59	251303.12	24365.59	251303.12	24365.59	246856.75	27390.66
	0	0	10	-1.00	24365.59	-1.00	24365.59	-1.00	24365.59	246856.75	27390.66
	0	0	11	-1.00	24365.59	-1.00	24365.59	-1.00	24365.59	246856.75	27390.66
	0	0	12	374.42	11.63	0.00	0.00	377.39	14.45	367.19	<mark>19.8</mark> 5
			••••								
	36	20	1	239.06	4.01	-32.37	8.15	221.41	<mark>6.1</mark> 9	253.78	5.30
	71										

Highest resolution

Statistical indicators and data quality

- $I / \sigma(I)$ overall (as high as possible)
 - > in the last resolution shell: $I / \sigma(I) > 2$
- The agreement between reflections equivalent by symmetry is assessed by the R_{svm} (or R_{merge}):

$$R_{sym} = \frac{\sum_{hkl} \sum_{i=1}^{n_{hkl}} |I_i(hkl) - \langle I(hkl) \rangle|}{\sum_{hkl} \sum_{i=1}^{n_{hkl}} I_i(hkl)}$$

- n_{hkl} is the number of equivalent measurements for a reflection hkl, taking crystal symmetry and Fridel's law, typically, 2 < n_{hkl} 12
- > If the symmetry is correct, usually $R_{sym} < 0.1$ ($R_{sym} < 0.05$ for very good data)

Statistical indicators and data quality

- R_{svm} (or R_{merge}) is a poor, but still widely used, statistical indicator
 - Precision on intensities increases with the number of measurements
 - > R_{sym} increases also with the number of measurements
 - Scientists were pushed to avoid high redundancy and to eliminate outliers to obtain better R_{svm}, at the price of a reduced precision on intensities
- Two other R-factors were introduced, to take into account the √n error propagations:

$$R_{meas} = \frac{\sum_{hkl} \sqrt{\frac{n_{hkl}}{n_{hkl} - 1}} \sum_{i=1}^{n_{hkl}} |I_i(hkl) - \langle I(hkl) \rangle|}{\sum_{hkl} \sum_{i=1}^{n_{hkl}} I_i(hkl)}$$
$$R_{pim} = \frac{\sum_{hkl} \sqrt{\frac{1}{n_{hkl} - 1}} \sum_{i=1}^{n_{hkl}} |I_i(hkl) - \langle I(hkl) \rangle|}{\sum_{hkl} \sum_{i=1}^{n_{hkl}} I_i(hkl)}$$

Statistical indicators and data quality

- CC_{1/2} (Pearson correlation coefficient) is good indicator of the significance of the signal (information content)
 - For each unique reflection hkl, the set of measurements is randomly divided into two halves, subset 1 & 2.
 - > The average intensity of each unique reflection hkl is calculated for each subset
 - > The correlation between averaged intensities of subset 1 and subset 2 is calculated:

$$CC_{1/2} = \frac{\sum_{hkl} (I_1 - \langle I_1 \rangle) (I_2 - \langle I_2 \rangle)}{\sqrt{\sum_{hkl} (I_1 - \langle I_1 \rangle)^2} \sqrt{\sum_{hkl} (I_2 - \langle I_2 \rangle)^2}}$$

- > The significance of $CC_{1/2}$ can be assessed by the Student's test
 - For a significance of p = 0.01:
 - CC_{1/2} > 0.3 for n = 100
 - CC_{1/2} > 0.08 for n = 1000

Karplus, P.A. and Diederichs, K. (2015) Assessing and maximizing data quality in macromolecular crystallography. Current Opinion in Struct.Biol. 34, 60-68 Karplus, P.A. and K. Diederichs, K. (2012) Linking Crystallographic Data with Model Quality. Science 336, 1030-1033

Parameters to be obtimized

- How many images to collect ?
 - Crystal symmetry, phasing method
- Which oscillation angle ?
 - Cell parameters, type of detector, type of processing
- Which crystal to detector distance ?
 - Resolution limit of the crystal, cell parameters
- Which exposure time ?
 - > Type of detector, no saturated spots

How many degrees should be collected

- The goal is to get 100 % complete data !
- The total rotation that should be collected depends on :
 - The symmetry of the crystal
 - The higher the symmetry, the smaller the range
 - Whether you expect anomalous signal
 - On the starting orientation of the crystal
- For a maximum completeness and a redundancy between 3 and 4, the minimum range is (if anomalous scattering is present, multiply by 2)
 - If optimal starting oritentation is used
 - **P**1 : 360°, **P**2₁ : 180°, **P**222 : 90°, **P**422 : 45°, **P**6 : 60°, **P**622 : 30°, ...
- But ...
 - A higher redundancy will always improve the data
 - Data collection time is no longer a limiting factor
 - The more you collect the better it is !

Optimal φ slicing ?

- Depends on :
 - Your crystal
 - Your beam
 - The detector type
 - > The cell parameters

An unperfect world ...

- In theory :
 - > perfect crystal: reciprocal lattice is built of points
 - perfect beam (no wavelength dispersion, no divergence...) : infinitely thin Ewald sphere

- perfect crystal: reciprocal lattice is built of points
- perfect beam (no wavelength dispersion, no divergence...)

- real life:
- mosaic crystal
- real beam (wavelength dispersion, divergence...)

Consequences on the Ewald's construction

Consequences on the Ewald's construction

• Width in ϕ of the spots and width of the Ewald sphere influence optimal $\Delta \phi$

Illustration taken from Andreas Förster presentation, Oléron 2018

- No readout noise
- Lower backgroud

Noise-free detection

No readout noise

No dark signal

100K detector

Illustration taken from Andreas Förster presentation, Oléron 2018

φ slicing ?

Wide φ -slicing

- Δφ > ξ
- Lots of background
- Few images

Fine φ -slicing

- Δφ ≪ ξ
- Minimal background
- Many images

Illustration taken from Andreas Förster presentation, Oléron 2018

Mueller et al. (2012)

- Fine slicing is preferable (less background and less spot overlap)
- Signal should be strong enough for spot detection
- Dealing with large number of image (2000 8000) per data sets is no longer an issue

Fine slicing improves R_{meas}

- $\Delta \phi \approx 1/10$ mosaicity optimal for
 - Overall statistics
 - High resolution shell statistics
 - Anomalous signal
 - Number of overlaps

Casañas et al. (2016)

Other parameters

- Time of exposure
 - > Direct detectors have high dynamic and low noise
 - Low intensity measurements do not suffer from noise
 - Saturation occurs at very high count rate
 - Prefer shorter exposure
 - Less radiation dammage
 - Allow to collect more images and check when radiation damage becomes significant
- Crystal-detector distance
 - Spots should not overlap
 - Depend on the wavelength and the unit cell dimension
 - Depend on how your crystal diffracts
 - Which is the highest resolution you wish to collect

In conclusion

- Always collect the maximum amount of data
 - High redundancy lead to more accurate data
 - Accuracy of structure factor is crucial for anomalous signal
 - Some time the symmetry is lower than expected
 - Do not hesitate to go for 360° or more
 - No need to find the optimal starting point
- Prefer shorter exposure time
 - Avoid radiation damage before obtaining complete data
- Prefere fine φ slicing
 - Less background superposed to your signal
- Set the proper crystal-detector distance
 - Avoid spot overlap
 - Obtain the highest possible resolution

Thanks to Patrice Gouet and Laurent Maveyraud for sharing slides !