Main approaches for sample Quality Control and Optimization

Arnaud.Poterszman@igbmc.fr

Main approaches for sample QC and optimization

Composition: Purity and identity

- Gel, capillary Electrophoresis
- Denaturing mass spectrometry
- Intact mass analysis
- Native mass spectrometry

Analysis of assembly processes (Spectroscopies & Thermodynamics)

- fluorescence methods
- surface plasmon resonnance
- NMR
- microcalorimetry
- equilibrium binding/allostery

Homogeneity, stability and folding

- Size exclusion chromatography
- Dynamic Light Scattering
- DSF/Thermal shift
- RMN, MS and CD

Size and shape (Scattering & Hydrodynamics)

- MALLS
- SAXS and SANS
- Analytical ultracentrifugation
- Electron microscopy

Main approaches for sample QC and optimization

Composition: Purity and identity

- Gel, capillary Electrophoresis
- Denaturing mass spectrometry
- Intact mass analysis
- Native mass spectrometry

Analysis of assembly processes (Spectroscopies & Thermodynamics)

- fluorescence methods
- surface plasmon resonnance
- NMR
- microcalorimetry
- equilibrium binding/allostery

Homogeneity, stability and folding

- Size exclusion chromatography
- Dynamic Light Scattering
- DSF/Thermal shift
- RMN, MS and CD

Size and shape (Scattering & Hydrodynamics)

- MALLS
- SAXS and SANS
- Analytical ultracentrifugation
- Electron microscopy

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Coomassie Blue Brillant Staining

Staining procedure	Detection limit	Reference	
Coomassie Blue	0.1 – 1; µg/band	Fazekas et al. 1963	0 [−] Na ⁺
Colloidal Coomassie/	10-100 ng/band	Neuhoff et al. 1968	0,45
Blue Silver	1-10 ng/band	Candiano et al., 2004	
Colloidal Coomassie/ Alu- based	1-10 ng/band	Kang et al. 2002	Coon

coomassie Brilliant Blue R-250 Dye C₄₅H₄₄N₃NaO₇S₂ MW 825.972

Enhancement of CBB staining

- Neuhoff : 20% methanol and higher ammonium sulfate concentrations
- Candiano: phosphoric acid, ammonium sulfate and methanol.
- Kang: aluminum sulfate and ethanol

Sypro Ruby (BioRad)

Deep Purple (GE Healthcare)

Quantification of stained gels provides first insights into complex relative stoickiometry

Analysis of the SEA complex relative stoichiometry by SYPRO Ruby staining (Algret et al. 2014)

Western blot

Mass spectrometry

Does the sample contain the expected molecules ?

Mass spectrometry

ESI and MALDI

MALDI-MS

Insights from peptide analysis

Analysis of proteins digested (trypsin, GluC,...) in gel or in solution Direct infusion of after on-line multi-dimensionnal liquid chromatography.

Protein sequence coverage: 68%

Matched peptides shown in **bold red**.

1	MVSAIVLYVL	LAAAAHSAFA	QIQLVQSGPE	LKKPGETVKI	SCRASGYTFI
51	DFSMHWVRQA	PGKGLKWMGW	INTETGEPTH	ADDFKGRFAF	SLETSASTAY
101	LQISDLEDED	TATYFCVRRG	REYWGQGTTL	TVSSAKTTPP	SVYPLAPGSA
151	AQTNSMVTLG	CLVRGYFPEP	VTVTWNSGSL	SSGVHTFPAV	LQSDLYTLSS
201	SVTVPSSTWP	SETVICNVAH	PASSTRVDRK	IVPRDCRILE	VLFQGPLGSD
251	YKDHDGDYKD	HDIDYKDDDD	KGSAHHHHHH	HHHH	

Protein identification Mutation and PTM mapping Protein-protein surface interaction Domain boundary analysis Glycan mapping

Quantitation by MS using ion peak intensity

Measure peak intensities from Different samples

Relative and absolute quantification

Compare isotopically labelled samples $(^{14}N/^{15}N)$

Isobaric Tags for relative and Absolute Quantification (iTRAC)

Isotope-Coded Affinity Tags (iCAT)

Spiking sample with isotope-labeled reference peptides

Thermofisher web site

Label free quantitation by MS

Label-free quantification approaches aim to correlate the mass spectrometric signal of intact proteolytic peptides or the number of peptide sequencing events with the relative or absolute protein quantity directly.

Relative quantitation strategies compare the levels of individual peptides in a sample to those in an identical, but experimentally modified, sample.

Absolute quantification can be obtained *estimated* from analysis of several mass spectrometric signal (TOP3 where the intensity of the selected peaks is taken into account) or the number of peptide sequencing events (emPAI == exponentially modified Protein Abundance Index).

H/D exchange, IM MS experiments

©2004 by American Society for Biochemistry and Molecular Biology

The p34/p44 interface is not limited to the p34 vWA/p44 RING interaction

Radu et al., NAR 2017

X-link/MS experiments

MW 572.43; Crosslink Mass 138.07 Spacer Arm 11.4 Å

"Na⁺

"Na

Na⁺0

Mass spectrometry

Does the sample contain the expected molecules ?

Intact mass analysis

Have the polypeptides the expected size and sequence? Proteolysis, posttranslational and chemical modifications

Direct injection or LC-MS

- Determination of the MW and comparison with the expected mass (phosphorylation, acetylation, methylation, ubiquitination ...), sequence errors
- Phosphorylations and other PTMs, Selenomethionine, N15, C13 labelling
- Domain boundary analysis for domain mapping (limited proteolysis)

Intact mass and PTMs of the CAK ternary complex

Foullien et al., Anal Biochem 2010

Mass spectrometry

Does the sample contain the expected molecules ?

Native Mass spectrometry

Direct injection, Non-volatile buffers prohibited

Analysis of non-covalent interaction

Multimeric state (Stoichiometry)

Protein-protein interaction

Protein-ligand, protein-DNA, protein/peptide, protein/metal interactions Protein conformational state

20 pmol/µL(NH4OAc 20-50 mM, pH 7.5) Native conformation is kept (active form)

Detection of a non-covalent protein/ligand complex

Insights into disassembly pathways and composition of sub-complexes

- Subunit composition and stoichiometry
- Sub-complexes and dissociation pathways
- Acceleration voltage and pressure

Politis et al. 2015 (Robinson and Sali's labs)

Hernandez, EMBO Rep 2008

The main limitation: sample preparation

Buffer exchange ("desalting")to eliminate non volative salts

Ultra centrifugation

- micro-concentrators :
- Microcon, Centricon, Amicon (Millipore)
- Vivaspin (Vivasciences)

- Size exclusion chromatography
- gel filtration colums :
 NAP-10 et NAP-5 (GE Healthcare)

- centrifuge
- 5 to 7 cycles at least
- takes time but very efficient procedure !

- Often 2 runs with a concentration step in between
- takes less time but dilutes the sample

Equilibrium dialysis

- dialysis or mini-dialysis units :
 - Slide-A-Lyzer minidialysis (Pierce)

- dilutes the samples
- very easy to perform (overnight)

Main approaches for sample QC and optimization

Composition: Purity and identity

- Gel, capillary Electrophoresis
- Denaturing mass spectrometry
- Intact mass analysis
- Native mass spectrometry

Analysis of assembly processes (Spectroscopies & Thermodynamics)

- fluorescence methods
- surface plasmon resonnance
- NMR
- microcalorimetry
- equilibrium binding/allostery

Homogeneity, stability and folding

- Size exclusion chromatography
- Dynamic Light Scattering
- DSF/Thermal shift
- RMN, MS and CD

Size and shape (Scattering & Hydrodynamics)

- MALLS
- SAXS and SANS
- Analytical ultracentrifugation
- Electron microscopy

Size exclusion chromatography

Large particles cannot enter the gel and are excluded. They have less volume to traverse and elute sooner.

Small particles can enter the gel and have more volume to traverse. They elute later.

Estimation of the apparent hydrodynamic radius

Estimation of the apparent hydrodynamic radius

Intrinsically disordered proteins

Proteins containing misfolded or intrisically disordered domains have larger giration radius than compact molecules, leading to an overestimation of their molecular weight.

Linear relation (Log scale) between the Number of residues and the hydrodynamic radius of Native and Denatured proteins (Uversky, Protein Science 2002)

 $log(V_h^N) = (2.197 \pm 0.037) + (1.072 \pm 0.015) \cdot log(N)$ $log(V_h^{U(GdmCl)}) = (1.723 \pm 0.041) + (1.655 \pm 0.018) \cdot log(N)$ $\boxed{N \quad Vu/Vn \quad Ru/Rn}$ $100 \quad 2,0 \quad 1,3$

2,4

2.9

3,2

3.4

1,3

1.4

1,5

1.5

200

400

600

800

Interaction with the matrix

A comparison of data from SEC (a) and AUC (b) on the same protein. SEC provides a weight that is close to that expected for a dimer, whereas AUC shows a peak for the weight of a tetramer. It is likely that the result using SEC indicates that the protein (which is membrane-associated) interacts with the column matrix, leading to retardation and an erroneously low estimation of weight.

Dynamic Light Scattering

DLS measures time dependent fluctuations in the intensity of the scattered light (over a short time), caused by random motion of the macromolecules in the solution.

Fluctuations are related to the translational diffusion coefficient which can provide an estimation of the related to the radius of the molecule.

Caracterize fluctuations of light scattered by a solution of macromolecule

Autocorrélation Fonction : $G(\tau) = \langle I(t)I(t + \tau) \rangle$

If the varies significantly between two obervations, the scatterred intensities at times t et $t+\tau$ are almost independent

If the system undergoes limited fluctuations, the scattered intensities at times t et $t+\tau$ are strongly correlated

Interpretation

The translational diffusion coefficient and the Stockes-Einstein relationship

large particules – slow Brown motion

small particules – fast Brown motion

Lysozyme M_w=14.5 kDa R_H=1.9 nm

Insulin - pH 7 M_w=34.2 kDa R_H=2.7 nm

$$D_t = \frac{kT}{6\pi\eta R_h}$$

- k_B Boltzmann's constant
- Г temperature (Kelvin)
- $\eta viscosity of solvent$
- R_h hydrodynamic radius (of a sphere)

Item	Diffusion Coefficient(cm ² /s)	Radius(nm)	Diameter(nm)	Pd(nm)	%Pd	Pd Index	Mw-R(kDa)	%Intensity	%Mass	
Peak 1	6.1727e-007	3.90321	7.80642	0.681343	17.456	0.0304711	81.4681	85.3554	99.9787	
Peak 2	4.35454e-008	55.3293	110.659	13.4123	24.2409	0.0587622	40303.7	13.921	0.0134334	
Peak 3	4.46504e-009	539.6	1079.2	93.4859	17.325	0.0300156	8311540	0.723623	0.00782431	

Radius = Mean hydrodynamic radius calculated from size distribution

Polydispersity (nm) = Standard distribution of the distribution (deviation from mean val Pd (%) = Standard distribution of the distribution / mean value

Paticule size distribution

Examples of size distributions

Paticule size distribution

Application to cristallisation

.....and to Croy-EM

New product

How stable is a protein/complex ?

Inactive protein

Unique conformation (generally) Biologically active Protein denaturation can be seen as a phase transition, from a solid-like state at low temperature to a liquid-like state at high temperature

Stability measurements

Measuring protein stability is measuring the energy difference between the unfolded (U) and the folded (F) (states.

Any methods that can distinguish between the Unforlded and the Folded states

Urea gradient gels - difference in the migrating rates between F and U –sensitivity to proteases- Catalytic activity

Absorbance (e.g. Trp, Tyr) - Fluorescence (Trp)-difference in emission max & intensity.- CD (far or near UV) - NMR- Chromophoric or fluorophoric probes (Thermofluor)

DSC (calorimetry)

Differential Scanning Calorimetry (DSC)

DSC measures the heat required to raise the temperature of the solution of macromolecules relative to that required to the buffer alone (heat obtained by substracting two large numbers).

DSC can be used to directly measure the enthalpy and melting temperature of a thermally induced transition.

At Tm (50% unfolded),

$$\Delta G = 0, \Delta H = T \Delta S$$

Thermofluor: fluorescent detection of protein unfolding

Use of an **environmentally sensitive fluorescent dye** that interacts preferentially with non-native protein, generated under denaturing conditions (K_{dve}, right equilibrium).

Fluorescence-based detection of protein unfolding (Thermofluor)

ThermoFluor: Use of an environmentally sensitive fluorescent dye that interacts preferentially with non-native protein, generated under denaturing conditions (K_{dve}, right equilibrium).

Protein stability (K_{U} , center equilibrium) is increased by ligand-binding energy (K_{b} , left equilibrium), shifting the equilibrium to the left.

The total protein stability, $\Delta G(T)$ is the sum of the protein's intrinsic stability ($\Delta_U G(T)$ and the binding energy ($\Delta_b G(T)$).

- (I) free dye with a maximal fluorescence of FO,
- (II) dye bound to the native state of the protein with a maximal signal of FN,
- (III) dye bound to the unfolded protein corresponding to FU.

Widely used for sample optimization and ligand screening

96 well plate format CFE97 **QPCR** intrument - CFE97 + 2 M PLP - CFE97 + 40 M PLP CFE97 + 40 M PMP $5 - 10 \mu g/assay$ Fraction unfolded 0.8 0.6 0.4 Tyrosine Kinase #1 0.2 5-aminoimidazole-Adenosine 0 4-carboxamide-1-B-4-ribofuranoside -0.2 30 50 70 dTn 3 Temperature (C) Weakly bound ligand 75 Tightly bound ligand 2 Covalently bound ligand 70 65 Tm (C) 60 0 55 ADP ATP -1 50 45 Deoxyguanosine 1.E-07 1.E-06 1.E-05 1.E-04 -2 2'deoxyadenosine Xanthine Log[L] (M) Hypoxanthine --3

Proteoplex: Sample optimization for cryo-EM analysis by spare matrix screening

complexes by sparse-matrix screening of chemical space ProteoPlex: stability optimization of macromolecular

ళ Oleg Ganichkin³, Vanessa Möller⁴, Jeremiah J Frye⁵, Georg Petzold⁶, Marc Jarvis⁶, Michael Tietzel⁷, Clemens Grimm², Jan-Michael Peters⁶, Brenda A Schulman^{5,8}, Kai Tittmann⁷, Jürgen Markl⁴, Utz Fischer² Elham Paknia², Niels Fischer Ohmer², Juergen Martin Kirves^{1,9}, Ashwin Chari^{1,9}, David Haselbach^{1,9}, Jan Holger Stark¹

NanoDSF: Analysis of intrinseq fluorescence

NanoDSF: Analysis of intrinseq fluorescence

https://2bind.com/nanodsf/

Is my protein folded?

From Catherine Bougault's presentation

MS-spectra of folded and un-folded proteins

The example of myoglobin

pH 7.4-4.5: holomyoglobine (hMb) intacte *état de charge faible*

pH 4.0 : hMb

+ changements conformationnels augmentation des états de charge
+ forme apo (perte de l'hème)

pH <4: aMb

holomyoglobineapomyoglobine

Dobo et al Anal.Chem, (2001), 73, 4763

Circular Dichroism (CD) Spectroscopy

Measures differences in the absorption of lefthanded polarized light versus right-handed polarized light which arise due to structural asymmetry. Can be used to:

- determine whether a protein is folded, and if so characterize its secondary structure
- study the conformational stability of a protein under stress -- thermal stability, pH stability, and stability to denaturants (i.e. urea)

$$\theta_d = \frac{2.303}{4} \cdot (A_L - A_R) \cdot \frac{180}{\pi}$$

$$\Delta A = (\epsilon_G - \epsilon_D)Cl$$

(degrees)

Secondary structural elements have characteristic CD spectra

Far UV-CD of random coil

- Positive at 212 nm (π>π*)
- Negative at 195 nm (n>π*)
 Far UV-CD of β-sheet
- Negative at 218 nm (π>π*)
- Positive at 196 nm (n>π*)

Far UV-CD of α-helix

- Coupling of the π>π* transitions leads to positive (π>π*) perpendicular at 192 nm and negative (π>π*) parallel at 209 nm
- Negative at 222 nm is red shifted (n>π*)

Measure of the 2^{nday} Structure content

- Fit the unknown curve θ_u to a combination of standard curves.
- In the simplest case use the Fasman standards

$$\theta_{t} = x_{\alpha}\theta_{\alpha} + x_{\beta}\theta_{\beta} + x_{c}\theta_{\alpha}$$

• Vary x_{α} , x_{β} and x_{c} to give the best fit of θ_{t} to θ_{u} while $x_{\alpha} + x_{\beta} + x_{c} = 1.0$

• Do this by least squares minimization

Two-state Unfolding of Protein

Keq=[N]/[U]= ($[\theta]_{obs}$ - $[\theta]_D$)/($[\theta]_N$ - $[\theta]_D$) = $f_N/(1-f_N)$, f_N = fraction folded

Main approaches for sample QC and optimization

Composition: Purity and identity

- Gel, capillary Electrophoresis
- Denaturing mass spectrometry
- Native mass spectrometry

Analysis of assembly processes (Spectroscopies & Thermodynamics)

- fluorescence methods
- surface plasmon resonnance
- NMR
- microcalorimetry
- equilibrium binding/allostery

Homogeneity, stability and folding

- Size exclusion chromatography
- Dynamic Light Scattering
- DSC, Thermal shift and DSF
- RMN, MS and CD

Size and shape (Scattering & Hydrodynamics)

- Electron microscopy
- SAXS and SANS
- MALLS
- Analytical ultracentrifugation

Electron microscopy for sample quality control

Before optimization After optimization

Stark and Chari, Microscopy 2016

Small Angle X-ray Scattering

With a crystaline sample, diffraction pattern forms from the constructive interference of light passing through a crystal

With a non crystaline sample, there is no prefferential orientation of the molecules and light is scattered in all directions resulting in averaged diffusion patterns

- q = 0: Determination of I(0)
- Small q Dimension of particules Guinier, Krazky
- Larger q Shape of particules (Ab-initio analysis, fitting)

$$I(q) = I(0) \exp\left(-\frac{R_g^2 q^2}{3}\right)$$

qRg \le 1.0

 $q = 4\pi \sin\theta/\lambda$

Neutron scattering (SANS)

Photons in interact with the electronic shell Neutrons interact with the nucleus

The intensity of the interaction depends on the diffusion lenght b:

The diffusion lenght is fonction of:

the atomic number (Z) for X-ray diffusion the spin of the nucleus for neutron scattering

н	-0.374 . 10 ⁻¹² cm		
D	0.667 . 10 ⁻¹² cm		
с	0.665 . 10 ⁻¹² cm		
N	0.940 . 10 ⁻¹² cm		
0	0.580 . 10 ⁻¹² cm		

Weak negative signal from H, positive for D

Varies as a function of the number of H/D atoms

No sample dammage

Contrast variation

$$I(\mathbf{q}) = \frac{1}{v} \left| \int_{v} \left(\rho(\vec{\mathbf{r}}) - \rho_{\mathrm{s}} \right) \, \mathrm{e}^{\mathbf{i} \, \vec{\mathbf{q}} \cdot \vec{\mathbf{r}}} \, \mathrm{d}^{3} \mathbf{r} \right|^{2}$$

First demonstration that aaRS/tRNA complexes are stable in the presence Molar AmSulfate concentration (Giege et al.1982).

Paved the way towards crystallization

Signal = contrast between

macromolecule solvent

Contrast variation

Protein/NA interactions Protein lipids interactions

Dynamic Light scattering

Þ The rate of intensity fluctuation is dependent upon the size of the particle/molecule

D = kT/f

 $f = 6p\eta r$

Hydrodynamic radius

Static Light Scattering

The intensity is a function of the particule's molecular weight, its concentration, shape (form factor) and of the refractive index increment of the solution.

SEC-MALS combines Light Scattering with fractionation

MALS: Multi-angle light scattering

Ovalbumin (expected MM) total mass in eluting peak	MM ± SD (5 analyses)	Precision SD (%)	Accuracy
Monomer (42.8 kDa) 178ug	43.0 ± 0.7	0.2%	0.4%
Dimer (85.6 kDa) 25ug	82.7 ± 0.4	0.5%	3%
Trimer (128.4 kDa) ? 5ug	114 ± 4	3%	11%

Aggregation and oligometric state

Monoclonal antibodies QC

Protein/DNA and protein detergent complexes

Glycosylated and PEGylated proteins

Protein/DNA complexes and glycoproteins

Protein and DNA have two distinct species, with sufficiently differentiated *dn/dc* and UV extinction coefficient

Stome, Whyatt WP1615

Analytical Ultracentrifugation

There are 3 forces acting on a sedimenting particle, buoyancy, viscous drag and centrifugal force. As soon as the rotor accelerates to a constant speed, the particle reaches terminal velocity and an equilibrium between these 3 forces is established. There are several experimental conditions and sample properties that influence the sedimentation behavior:

Experimental conditions:

- 1. rotor speed
- 2. distance from the rotor center
- 3. density of the solution
- 4. viscosity of the solution
- 5. temperature

Sample properties:

- 1. molecular weight
- 2. shape
- 3. partial specific volume

Analytical ultracentrifuge

Ultracentrifuge that posseses a detection system allowing the measure of the solute concentration as a function of the distance to the rotation axis (optical density, interferrométry).

Absorbance measurement: choice of the wavelenght:

- NA and protein 260 et 280 nm
- ligand eg 380
- peptidic bond 220:

Avantage: large choice in the experimental conditions: buffer and ionic strength

Sedimentation velocity

Principle: the protein migrates towards the bottom of the cell; The speed of the particule is measured

Determine sedimentation coefficient s (SVEDBERG) 1 S = 10 $^{-13}$ s

Speed of sedimentation v = dr/dt per acceleration unit

 $s = dr/dt . (1/w^2r)$

 $dr/dt = s \cdot w^2 r$

dr/dt = speed of the particule
r = distance of the particule to the rotation axis
w = angular speed of the rotor

[MS⁻¹]*[1/[S⁻²M]] # [S]

In practice, one can measure how the sedimentation boundary moves

Diffusion impacts on the shape of sedimentation boundaries They are recorded at regular.intervals

What is measured ?

s depends on both M and f

temps

Characterization of Monomeric Intermediates during VSV Glycoprotein Structural Transition. Albertini et al. 2012 Plos Pathogens

Equilibrium Sedimentation

At low speed, diffusion is not negligeable 0.8 The system reaches an equilibrium: centrigulation force = diffusion force 0.2 0.1 5.85 5 90 0.00 6.05 6 10 $Ln(C_{r}/C_{0}) = M\omega^{2} (1 - V\rho)(x^{2} - x_{0}^{2})/2RT$ Radius, cm 0.2 0.0 $Ln\left(C/C_{0}
ight)$ Representation of Ln(Cx/Co) as a function of -0.2 x2-xo2 yields a linear function -0.4 -0.6 The slope is only a function of M, ω , v and ρ -0,8 $x^2 - x_0^2$

 $\begin{array}{l} \textbf{C}x \text{ macromolecule concentration} \\ x \text{ distance to the axis} \\ \underline{v} \ (\text{cm}^3/\text{g}) \text{ volume specific partial (hydrated) of the macromolecule} \\ \rho \text{ volumic mass of the solvant (g/cm}^3) \end{array}$

Oligomeric state of human TFIIE

The GFT TFIIE is composed of α and β subunits

Based on SEC analysis described as an $\alpha_2\beta_2$ heterotetramer

$\alpha\beta$ heterodimer

Jawhari A, et al EMBO Reports 2006 May;7(5):500-5

A real case

FIGURE 3

Sedimentation equilibrium data. Simulated data for a reversible monomer-dimer equilibrium: (—) total, (\cdots) monomer, (--) dimer. The concentration distribution of the dimer is steeper than that of the monomer, and the relative amounts of monomer and dimer at each radial point are determined by mass-action equilibrium.

Mixture of noninteracting solutes

$$a(r) = \sum_{n} c_{n,0} \varepsilon_n d \exp\left[\frac{M_n (1 - \overline{v}_n \rho) \omega^2}{2RT} (r^2 - r_0^2)\right] + \delta$$

Self-association

$$a(r) = \sum_{n} n\varepsilon_{1} dK_{n} (c_{1,0})^{n} \exp\left[\frac{nM_{1} (1 - \overline{\nu}\rho)\omega^{2}}{2RT} (r^{2} - r_{0}^{2})\right] + \delta \quad \text{with } K_{1} = 1$$
(10)

Hetero-association

$$\begin{split} a(r) &= c_{A,o} \varepsilon_A d \exp \left[\frac{M_A^* \omega^2}{2RT} \left(r^2 - r_o^2 \right) \right] \\ &+ c_{B,o} \varepsilon_B d \exp \left[\frac{M_B^* \omega^2}{2RT} \left(r^2 - r_o^2 \right) \right] \\ &+ c_{A,o} c_{B,o} K_{AB} \left(\varepsilon_A + \varepsilon_B \right) d \exp \left[\frac{\left(M_A^* + M_B^* \right) \omega^2}{2RT} \left(r^2 - r_o^2 \right) \right] + \delta \end{split}$$

Main approaches for sample QC and optimization

Composition: Purity and identity

- Gel, capillary Electrophoresis
- Denaturing mass spectrometry
- Native mass spectrometry

Analysis of assembly processes (Spectroscopies & Thermodynamics)

- fluorescence methods
- surface plasmon resonnance
- NMR
- microcalorimetry
- equilibrium binding/allostery

Homogeneity and stability

- Size exclusion chromatography
- Dynamic Light Scattering
- DSC/Thermal shift
- DSF

Size and shape (Scattering & Hydrodynamics)

- MALLS
- SAXS and SANS
- Analytical ultracentrifugation
- Electron microscopy

Integrative determination of macromolecular structures

Aim: combine heterogenous data (information of any source) and propose hybrid models to provide the best possible description of the system (a set of models consitent with available data).

Topological models from MS-based hybrid analysis

That's it