

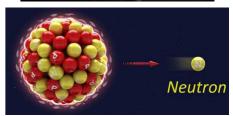
Ecole d'Oléron 2019

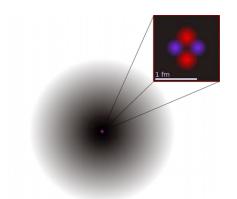
Dominique HOUSSET

E-mail: dominique.housset@ibs.fr

How can we obtain structural information?

- A question of interaction between radiation and matter
- Radiations can be:
 - Photons (electro-magnetic wave: light, X-rays)
 - Electrons
 - Neutrons
- Matter
 - Your (macro)molecule under study
 - Atoms forming your molecule
 - H, C, N, O, S, ...



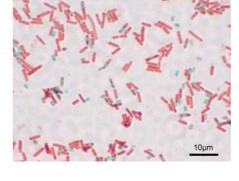


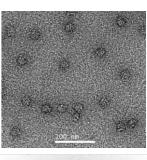
1 Å = 100,000 fm

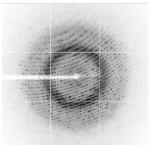
Illustrations dapted from Wikipedia

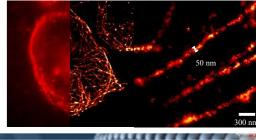
Possible approaches

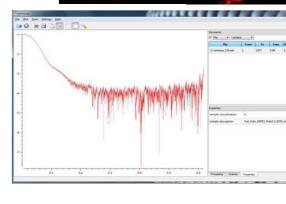
- "Imaging" techniques
 - Visible light microscopy
 - Electron microscopy
 - X-ray, neutron or electron crystallography
- Localization technique
 - Super-resolution microscopy
- Spectroscopic techniques
 - > NMR
 - > SAXS

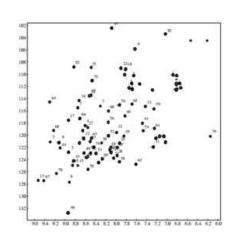






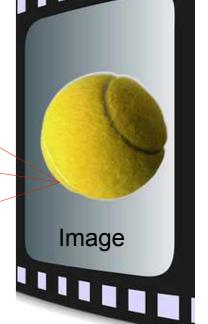






Visible light microscopy

- Source light (radiation): photons or electromagnetic wave
 - Wave length: 0.3 0.8 μm
- Object (matter): absorb and re-emit incident light in all directions
 - More or less absorption
 - some time wave length dependent (color)
- Lens: focuses light emitted by the object on the image plane
 - The light emitted by one point of the object is focused on one point of the detector film

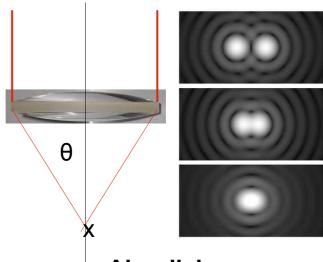


Why can't we see molecule with visible light?

- Be because of the wave nature of light
 - Diffraction of light by a disk when the disk size of the same order of magnitude than the wave length:
 - The angle at which the 1st minimum occurs is given by: $sin\theta \approx 1.22 \frac{\lambda}{d}$ (far from the aperture, d diameter of the aperture)
- Rayleigh criterion

$$d=1.22\frac{\lambda}{2 n \sin \theta} \approx \frac{\lambda}{2 \sin \theta}$$
 (in air)

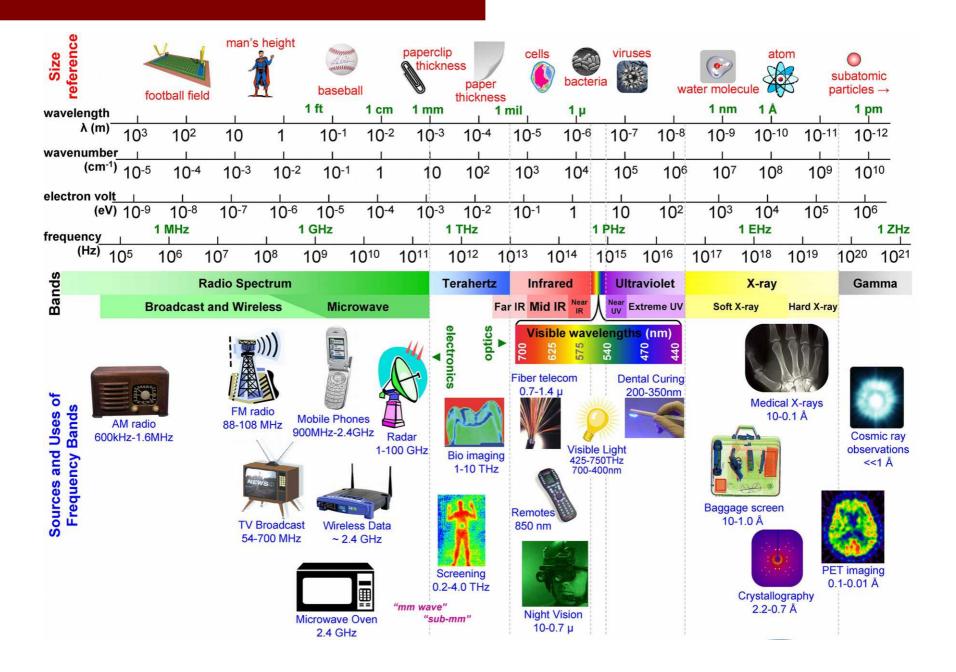
- \triangleright n.sin θ is the numerical aperture of the lens
 - Max $\approx 1.4 1.6$
- Maximum resolution with visible light
 - ≈ 0.25 µm
 - Enough for cells
 - Not enough for molecules



Airy disk

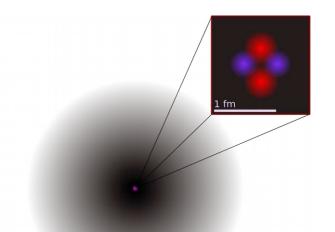
The best focussed spot of light made by a lens of circular aperture is limited by the diffraction light

How to increase resolution?



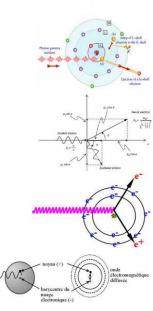
Atomic resolution with photons?

- Decrease the wavelength
 - For atomic resolution
 - $d \sim 1 \text{ Å} => \lambda \leq 2 \text{ Å}$
 - Use photons in the domain of X-rays
 - Typically: for $\lambda = 1$ Å, E = hv = hc/ $\lambda \approx 12.4$ keV



1 Å = 100,000 fm

- Do X-rays interact with atoms?
 - Yes, X-ray photons with the electronic cloud of an atom
 - Photoelectric effect (absorption of a photon and emmission of an elctron)
 - Compton Scatering (inelastic scattering between a photon and an electron)
 - Electron/Positron pair production (only high energy photon > 1MeV)
 - Rayleigh scattering (Photon elastic scattering by atomic electons)



How a photon is scattered by an atom ?

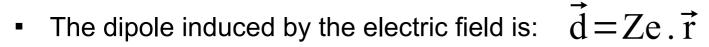
- Elastic scattering (no loss of energy, wavelength is conserved)
 - Rayleigh scattering: bound atomic electrons
 - Thomson scattering: free electrons (photon energy >> electron binding energy)
 - Carbon atom E(1s) = -1013 eV, E(2s,2p) = -36 eV to be compared to 7 to 15 keV for X-ray photons
 - Photon energy should differ from element absorption edges
- The wave description of X-ray photons (electromagnetic wave) is fine to explain the phenomenon (classical model)
 - In an electric field \vec{E} a charge e feels a force: $\vec{F} = e \cdot \vec{E}$
 - Thus, the electric field of the electromagnetic wave will induce movement of nucleus and electrons
 - Due to the non-relativistic velocity of atomic electrons, the Lorentz force induced by the magnetic field of the electromagnetic wave $\vec{F} = e \cdot \vec{v} \wedge \vec{B}$ can be neglected

Oscillating dipole

- In an electric field \dot{E} a charge e feels a force: $\vec{F}\!=\!e$. \vec{E}
- The force will induce an acceleration of both the electron and the nucleus

The force will induce an acceleration of both the electron and the nucleus
$$\vec{F} = m \cdot \vec{\gamma} = \vec{F} = -e \cdot \frac{\vec{E}}{m_e}$$
 and $\vec{\gamma}_n = +Ze \cdot \frac{\vec{E}}{(Zm_p + (A-Z)m_n)}$. Since m_p and $m_n >> m_e$ one can neglect the movement of the nucleus

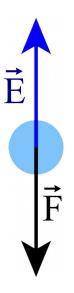
• Since m_p and $m_n >> m_e$ one can neglect the movement of the nucleus



(with \vec{r} vector between center of mass of electrons and nucleus)

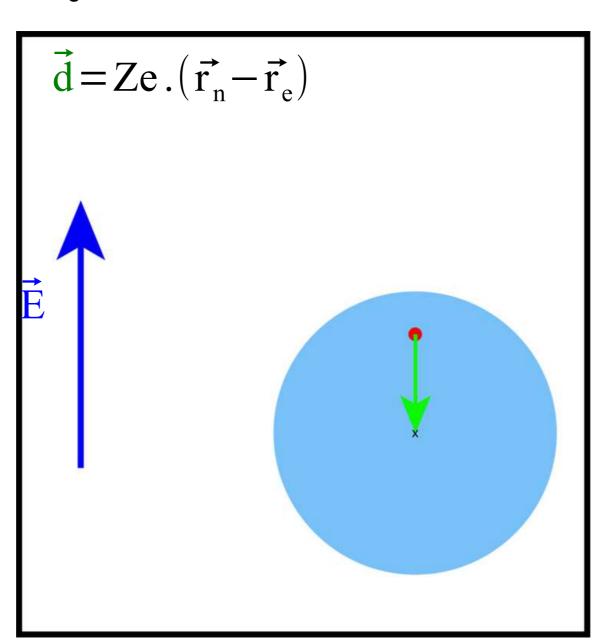
$$\frac{\partial^2 \vec{d}}{\partial t^2} = -Ze \cdot \vec{\gamma}_e = Ze^2 \cdot \frac{\vec{E}}{m_e}$$

$$\vec{E} = \vec{E}_0 \cos[\omega t] \Rightarrow \vec{d} = -\left(Ze^2 \frac{\vec{E}_0}{m_e \omega^2}\right) \cos[\omega t]$$
oscillating electric field
oscillating dipole

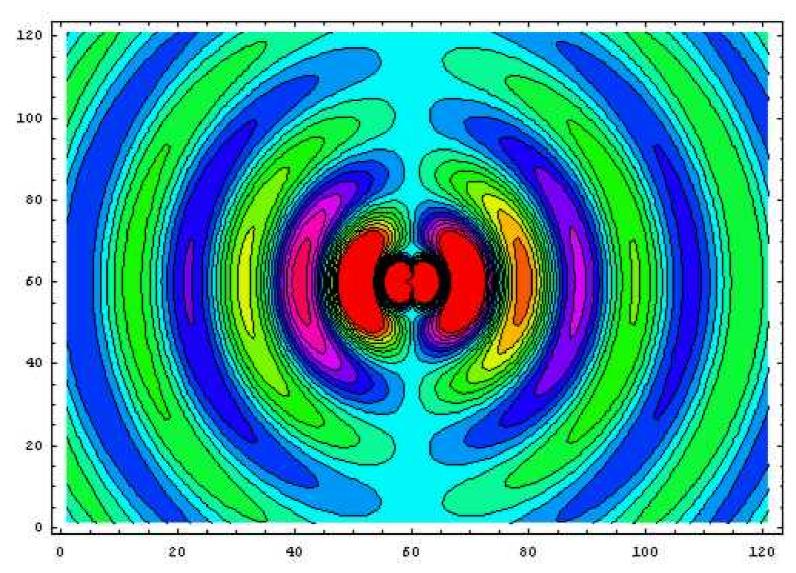


Oscillating dipole and emitted wave

The incident electromagnetic wave induce the oscillation of the electronic cloud



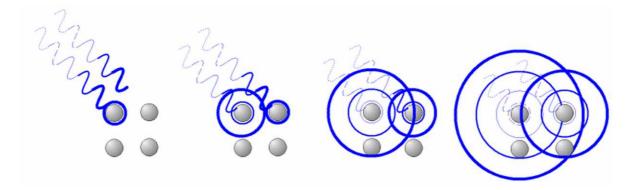
Oscillating dipole and emitted wave



The negatively charged electronic cloud and the positively charged nucleus become an **oscillating dipole**, thus emitting a spherical electromagnetic wave of **same wavelength** with a phase shift of π

Accessible information?

- Each atoms is emitting an electromagnetic wave (photon):
 - Amplitude proportional to Z (number of electrons)
 - Phase determined by the phase of the incident wave, at the position of the atom



- => In principle, access to the electron density
- What about other beams?
 - **Electrons**
 - Neutrons

Other particles to probe matter?

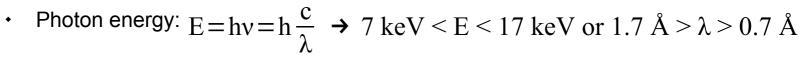
- Is photon (electromagnetic wave) the unique probe to see molecule?
- In 1924, Louis de Broglie proposed that all elementary particles can behave both as a wave and as a particle
 - Any particle can be used to probe matter if
 - the associated wave length $\lambda = \frac{h}{h}$ is appropriate
 - It interact with matter
 - What is the wave length of an elementary particle?

• Photon (no mass):
$$E = hv = h\frac{c}{\lambda}$$
, $p = \frac{hv}{c}$

• Particle (mass
$$\neq$$
 0): $E = \frac{1}{2} mv^2$, $p = mv$, $\lambda = \frac{h}{mv}$

with $h(Plank constant) = 6.6257 \cdot 10^{-34} J.s$, p:momentum, v:frequency

Energies and wave length



Electrons (1897, Thomson)

• Negatively charged particle (q = $1.6 \cdot 10^{-19} \cdot C$, $m_e = 9.1091 \cdot 10^{-31} \cdot kg$)

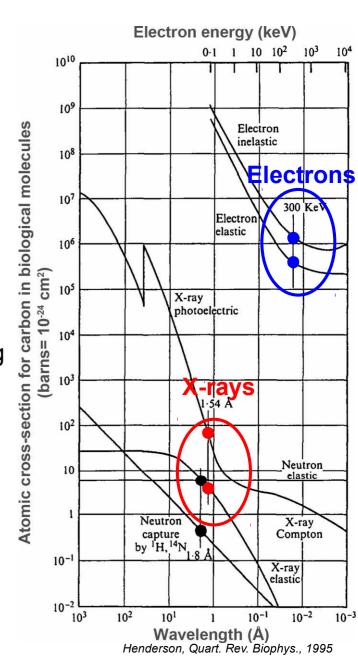
$$E = \frac{1}{2} m_e v^2$$
, $\lambda = \frac{h}{m_e v} \rightarrow \lambda = 1.2 \text{ Å for } v = 6000 \text{ km/s and } E = 100 \text{ eV}$
in practice 100 keV < E < 300 keV and 0.037 Å > λ > 0.019 Å

Neutrons (1932, Chadwick)

• Neutral particle ($m_n = 1.6749 \ 10^{-27} \ kg$)

$$E = \frac{1}{2} m_n v^2$$
, $\lambda = \frac{h}{m_n v} \rightarrow \lambda = 1.5 \text{ Å for } v = 2600 \text{ m/s and } E = 3.6 \cdot 10^{-2} \text{ eV}$

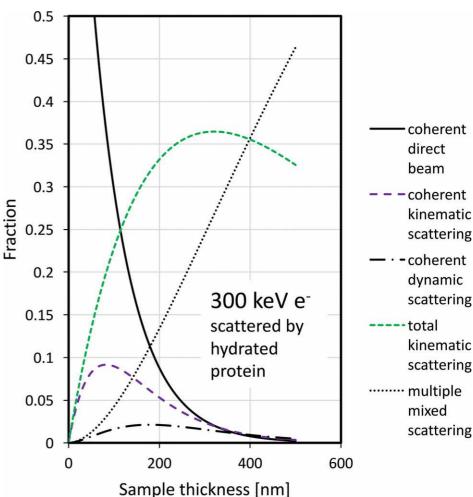
- Strongly interact with matter
 - About 10⁴ times more than X-rays
- Elastic scattering represents 25% of scattered electrons
 - Only 5% for X-rays
- X-rays are quite inefficient to probe matter
 - 98% of the photons go trough the sample without being scattered (with a typical protein crystal)
 - For the 2% remaining
 - 84% are anihilated
 - 8% are involved in Compton scattering
 - 8% useful for Bragg diffraction (elastic scattering)



- Optimal thickness of sample
 - All electrons are absorbed if sample thickness exceed the μm
 - For X-rays, about 98% of the photons go through a 100 μm thick sample without any interaction
- Mean free path of electrons in ice

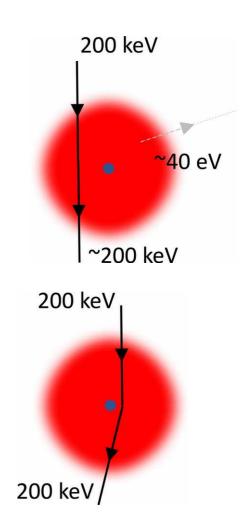
	120 keV	300 keV
Λ for $e_{inelastic}$	50 - 200 nm	~ 400 nm
Λ for $e_{elastic}$	300 - 800 nm	~ 1600 nm

Angert et al., Ultramicroscopy, 1996; Yonekura et al., J. Struct. Biol., 2006; Grim et al., Ultramicroscopy, 1996; Feja & Aebi, J. Microsc., 1999



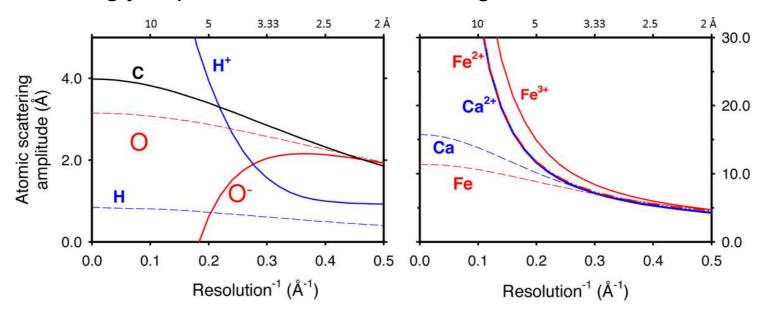
Illustrations taken from J.P. Abrahams

- Strongly interact with matter
 - Elastic interaction with:
 - Atomic electron (small energy transfer)
 - No change in trajectory
 - Nucleus (Rutherford or Coulomb scattering)
 - Main contribution to elastic scattering
 - Inelastic interaction
 - Bremsstrahlung (higher enrgies)
 - Absorption (lower energies)



Illustrations taken from J.P. Abrahams

- Atomic scattering factor for electrons depends on Z
 - Scattering probability ~ Z^{4/3} (for X-rays, scattering probability ~Z²)
- Also strongly depends on the atomic charge



- => access to the Coulomb potential
 - Depends from both the electron density and charges

Neutrons

- No electromagnetic interaction
 - Penetrate matter easily
- Different type of neutrons
 - Cold neutrons: E<0.0038 eV
 - Thermal neutrons: 0.0038 eV < E < 0.5 eV => used for diffraction and SANS experiment
 - Epithermal or resonance neutrons: 0.5 eV<E<100 keV
 - Fast neutrons: 100 keV<E<10MeV
 - Relativistic neutrons: E>10MeV
 - Elastic interaction with nucleus: E < 1MeV</p>
 - Inelastic scattering by nucleus: E > 1MeV
 - Induced fission

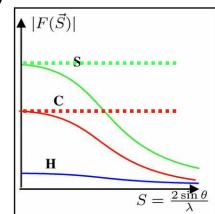
Neutrons: differences and similarities with X-rays

- Neutrons interact with nucleus
 - We observe nucleus and not electron density
 - Proton can be observed
 - Scattering cross-section comparable to that of X-rays
 - Variable scattering cross section depending on the type of atom
- Nuclei are very small (10-15m) compare to the wave length (10-10 m)
 - Quasi a point
 - · Impact on the atomic form factor

• Spherical electron density
$$f_{at}(\vec{s}) = f_{at}(|\vec{s}|) = 2 \int_{r=0}^{\infty} \rho(r) \sin \frac{(2\pi sr)}{s} dr$$

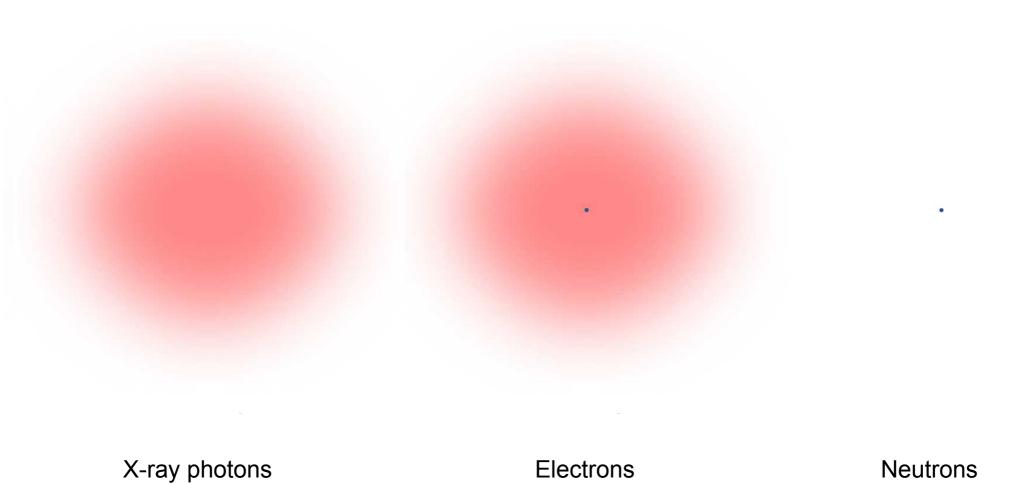
 $f_{at}(0)=Z$

- For neutron $f_{nuc}(s) = \sigma_{scat}$
- No decrease with s or resolution



=> access to spatial distribution of nuclei

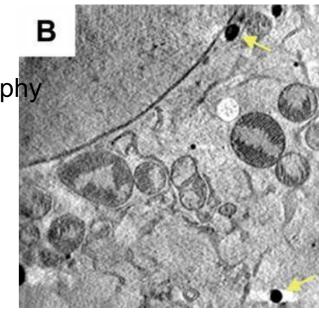
Different point of views



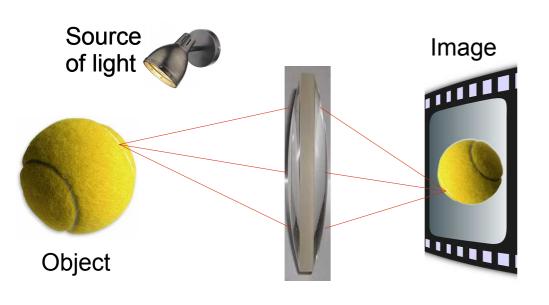
Getting the image of the molecule with X-rays?

- Do we have lenses for X-ray?
- Yes for soft X-rays : Soft X-ray microscopy or tomography
 - Energy in the range 200 eV 1000 eV
 - Fresnel zone plate objective
 - Resolution limited to ≈ 50 nm
 - OK for cellular imaging

- No possibility to form an image at atomic or quasi-atomic resolution
- No image on the detector, but a scattering spectra



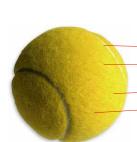
Scheme for a scattering spectrum



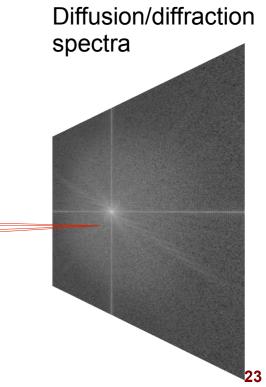
- With a lens
 - All radiation arriving on one point of the detector come from one point on the object

- Without a lens
 - Radiation arriving on one point of the detector come from all points on the object

Source of light

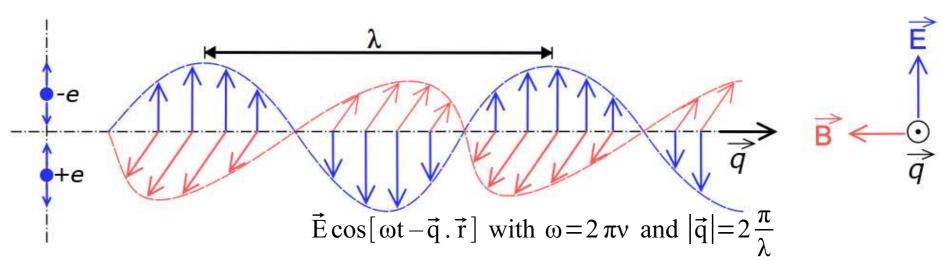


Object



What can we do with a scattering spectra?

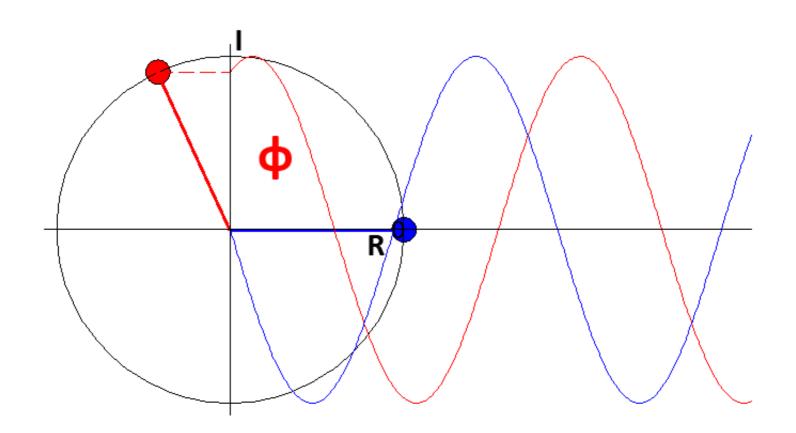
- What is the link between the scattering spectra and the molecule?
- Can we still get a image of the molecule?
- Mathematical representation of an electromagnetic wave?
 - Wave generated by an oscillating dipole



 ω : angular frequency, ν : frequency, λ : wave length, \vec{q} : wave vector or momentum

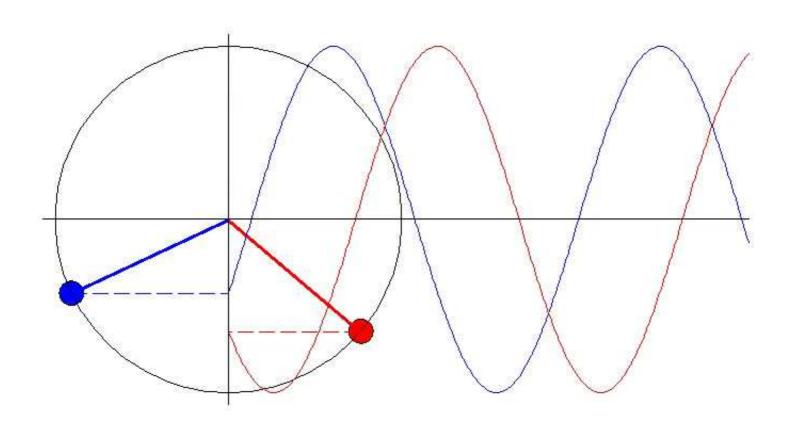
Reminder about waves

- Fresnel representation of waves
 - > Electric field: $\vec{E}_0 \cos[\omega t \vec{q}_0 \cdot \vec{r}] = \vec{E}_0 \exp[i(\omega t \vec{q}_0 \cdot \vec{r})]$
 - > A phase shift ϕ : $\vec{E_0} \exp[i(\omega t \vec{q_0}.\vec{r} + \phi)] = \vec{E_0} \exp[i(\omega t \vec{q_0}.\vec{r})]. \exp[i\phi]$



Reminder about waves

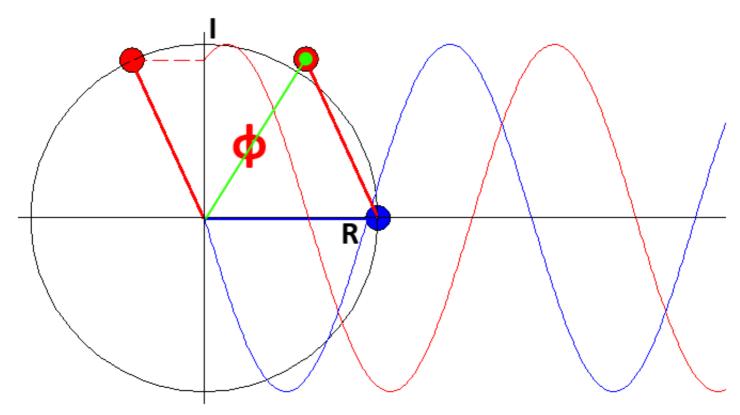
- Fresnel representation of waves
 - Electric field: $\vec{E}_0 \cos[\omega t \vec{q}_0 \cdot \vec{r}] = \vec{E}_0 \exp[i(\omega t \vec{q}_0 \cdot \vec{r})]$
 - A phase shift ϕ : $\vec{E_0} \exp[i(\omega t \vec{q_0}.\vec{r} + \phi)] = \vec{E_0} \exp[i(\omega t \vec{q_0}.\vec{r})]. \exp[i\phi]$



Reminder about waves

Sum of two waves are simple to express

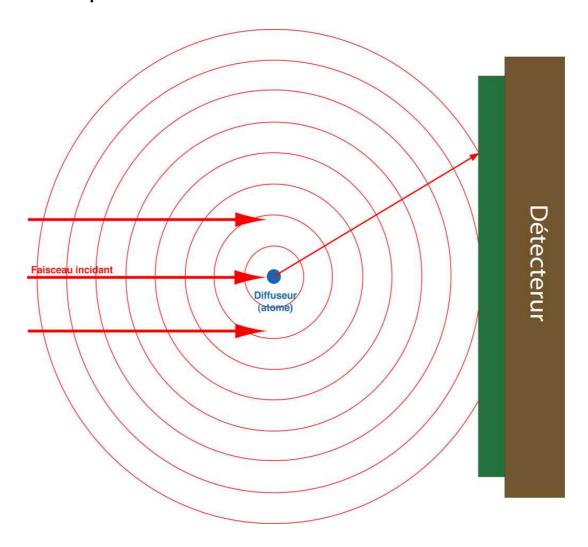
$$\vec{E}_0 \exp[i(\omega t - \vec{q}_0 \cdot \vec{r})] + \vec{E}_0 \exp[i(\omega t - \vec{q}_0 \cdot \vec{r})] \cdot \exp[i\phi] = \vec{E}_0 \exp[i(\omega t - \vec{q}_0 \cdot \vec{r})] \cdot (1 + \exp[i\phi])$$



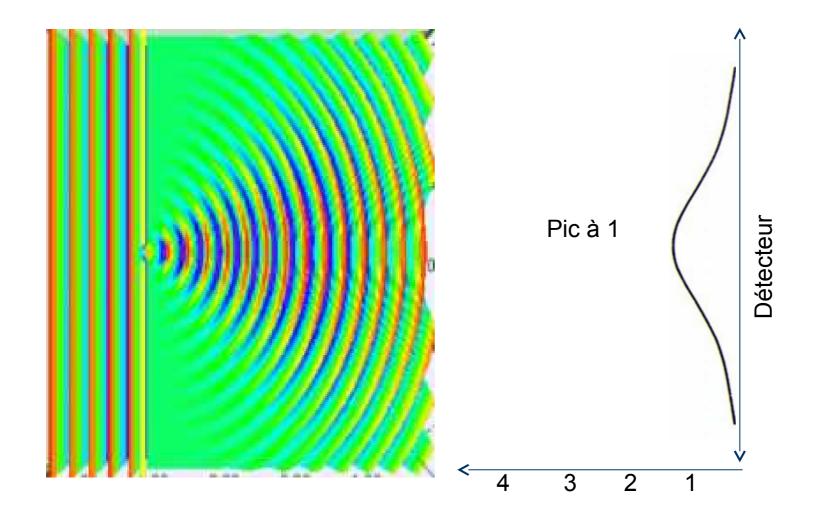
- $\phi = 0^{\circ}$ (or 2π) => in phase => constructive interference
- $\phi = 180^{\circ}$ (or π) => out of phase => destructive interference

Scattering by one atom

The planar incident wave induces the emission of a spherical wave of same wavelength and with a π phase shift

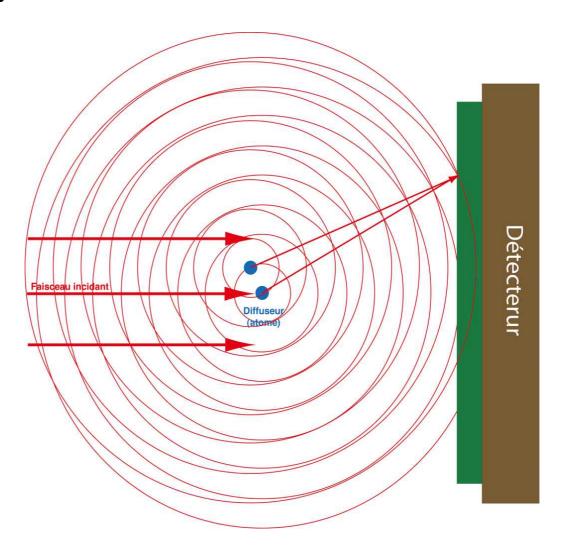


Scattering by one atom

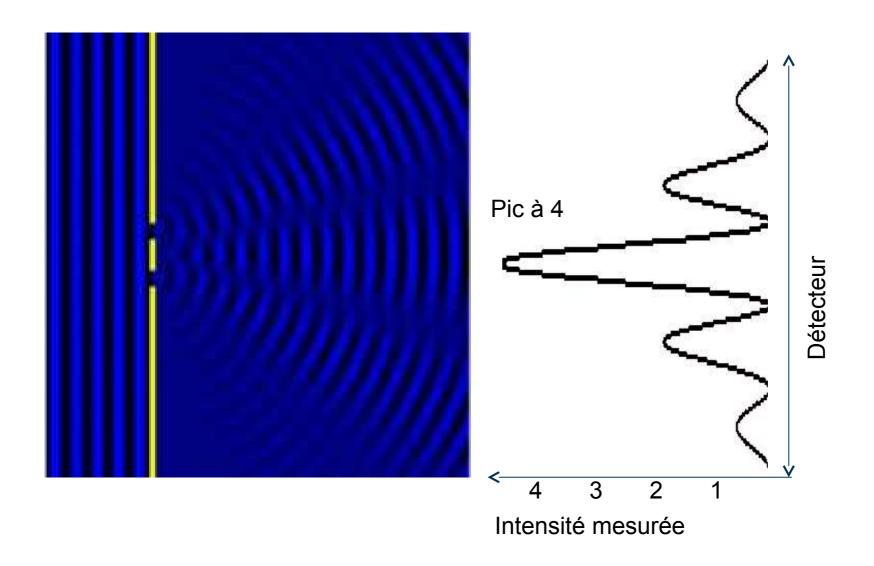


Scattering by two atoms

The two atoms are emitting a spherical electromagnetic wave. If the two atoms are not mobile and close by, the two waves interfere



Scattering by two atoms

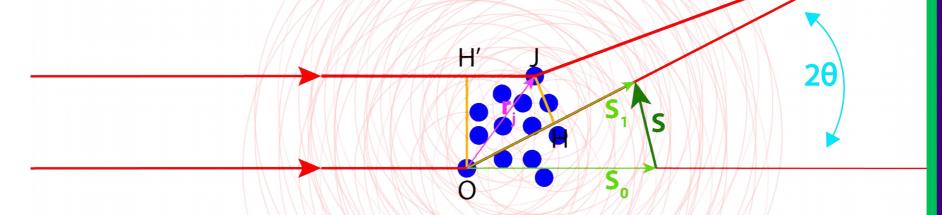


Scattering by numerous atoms

All atoms are emitting a spherical electromagnetic wave. In P, you get the sum of the waves emitted by all atoms. The phase of the wave depend on the position of the atom H What is this sum?

Scattering by numerous atoms

- A wave is described by its wave vector \vec{q} $(|\vec{q}| = \frac{2\pi}{2})$
- or is scattering vector $\vec{s} = \frac{\vec{q}}{2\pi} (|\vec{s}| = \frac{1}{\lambda})$
- The incident wave is : $\vec{E}_0 \exp[i(\omega t \vec{q}_0 \cdot \vec{r})]$



The wave emitted by atom J in P is:

$$\underbrace{\vec{E}_0 exp[i(\omega t - \vec{q}_0.\vec{r}_J)]}_{\text{incident wave at atom J}}.$$

$$\frac{f_{J}}{\left[\vec{r}-\vec{r}_{J}\right]}$$

$$\underbrace{\exp[-i\vec{q}_1.(\vec{r}-\vec{r}_J)]}_{...}$$

∝ scattering factor of atom J

$$\underbrace{\exp[-i\,\vec{q}_1.(\vec{r}-\vec{r}_J)]}_{\text{dependence with distance from atom J}}.\underbrace{\exp[i\pi]}_{\pi \text{ phase shift}}$$

Scattering by numerous atoms

The wave emitted by all atoms in P is jus the sum:

$$\sum_{J} \vec{E_0} \exp[i\left(\omega t - \vec{q_0}.\vec{r_J}\right)]. \frac{f_J}{\left|\vec{r} - \vec{r_J}\right|}. \exp[-i\vec{q_1}.(\vec{r} - \vec{r_J})]. \exp[i\pi]$$
 If sample size << distance sample-detector $(\left|\vec{r} - \vec{r_J}\right| \approx \left|\vec{r} - \vec{r_0}\right|)$ it becomes:

$$\frac{\vec{E}_{0}}{\left|\vec{r} - \vec{r}_{0}\right|} \exp[i(\omega t - \vec{q}_{1}.\vec{r})]. \exp[i\pi]. \sum_{J} f_{J}. \exp[i(\vec{q}_{1} - \vec{q}_{0}).\vec{r}_{J}]$$

If we define the scattering vector: $\vec{s} = \vec{s}_1 - \vec{s}_0 = \frac{1}{2\pi}.(\vec{q}_1 - \vec{q}_0)$

$$\frac{\vec{E}_0}{\left|\vec{r} - \vec{r}_0\right|} \exp\left[2 i\pi \left(vt - \vec{s}_1 \cdot \vec{r}\right)\right] \cdot \exp\left[i\pi\right]. \qquad \sum_{J} f_{J} \cdot \exp\left[2 i\pi \vec{s} \cdot \vec{r}_{J}\right]$$

depend on the incident wave and position P

Fourier transform of the distribution of scattering factors

Scattering by numerous atoms

- The structure factor is $F(\vec{s}) = \sum_{J} f_{J} . \exp[2i\pi(\vec{s}) . \vec{r}_{J}]$
 - It is the Fourier transform of the distribution of electron, *i.e.* the electron density:

$$F(\vec{s}) = \sum_{J} f_{J}. \exp[2i\pi(\vec{s}).\vec{r}_{J}] = \int_{\text{vol}} \rho(\vec{r}) \exp[2i\pi\vec{r}.\vec{s}]. d\vec{r}$$

- It is a complex number (amplitude and phase)
- The <u>electron density</u> can be calculated by the reverse Fourier transform:

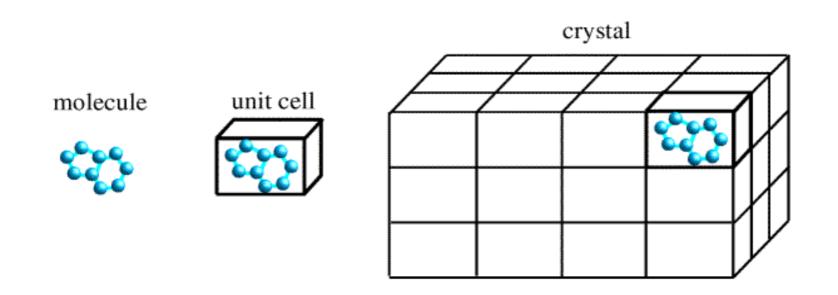
$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \int_{\text{rec.vol.}} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}] \cdot d\vec{s}$$

- The detector measures the intensity of the scattered wave
 - This intensity is proportional to the square modulus of structure factor

$$I(\vec{s}) \propto |F(\vec{s})|^2$$

What if the sample is a crystal?

- A crystal can be described by a unit cell
 - > Three vector \vec{a} , \vec{b} , \vec{c} define this unit cell
- Unit cells (identical content) are piled up in the 3 directions of space



What if the sample is a crystal?

The general form of the structure factor is:

$$F(\vec{s}) = \int_{\text{vol sample}} \rho(\vec{r}) \exp[2i\pi \vec{r}.\vec{s}].d\vec{r}$$

If the sample is a crystal, it can be described as a pile of N_{cell} unit cells

$$F(\vec{s}) = \sum_{n=1}^{N_{cell}} \int_{\text{vol} cell} \rho(\vec{r} + \vec{r}_n) \exp[2i\pi(\vec{r} + \vec{r}_n) \cdot \vec{s}] \cdot d\vec{r}$$
with: $\vec{r}_n = n_1 \cdot \vec{a} + n_2 \cdot \vec{b} + n_3 \cdot \vec{c}$ and $\rho(\vec{r} + \vec{r}_n) = \rho(\vec{r})$

$$F(\vec{s}) = \sum_{n=1}^{N_{cell}} \exp[2i\pi n_1 . \vec{a} . \vec{s}] \exp[2i\pi n_2 . \vec{b} . \vec{s}] \exp[2i\pi n_3 . \vec{c} . \vec{s}]. \int_{\text{vol cell}} \rho(\vec{r}) \exp[2i\pi \vec{r} . \vec{s}] . d\vec{r}$$

$$factor \approx 0, \text{ except if } \vec{s} \text{ satisfy Laue equations } : \vec{a} . \vec{s} = h, \vec{b} . \vec{s} = k, \vec{c} . \vec{s} = 1 \Rightarrow \text{ factor } = N_{cell}$$
Fourier transform of electron density of the unit cell

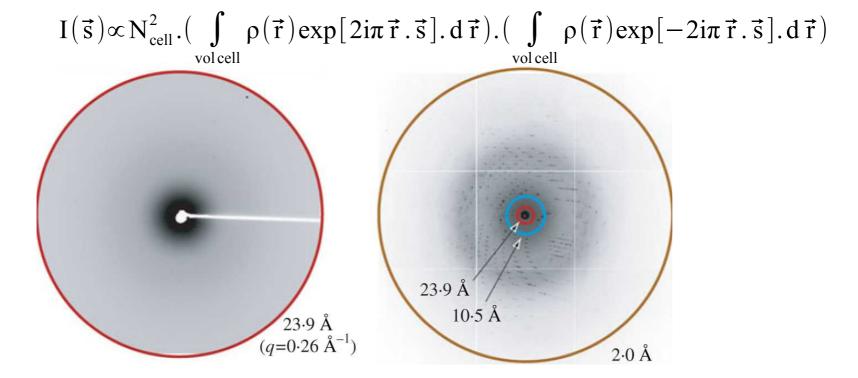
> There is significant X-ray scattering only in specific, discrete direction => <u>diffraction</u> phenomenon

X-ray scattering by a crystal

In directions that satisfy Laue equation, the structure factor is the one of the unit cell, multiplied by the number of cells in the crystal.

$$F(\vec{s}) = N_{\text{cell}}. \int_{\text{vol cell}} \rho(\vec{r}) \exp[2i\pi \vec{r} \cdot \vec{s}] \cdot d\vec{r}$$
Fourier transform of electron density of the unit cell

The crystal is a signal amplifier, in direction where you have signal:



Laue equation and Bragg's law

In the case of a crystal:

• \vec{S} is a vector of a lattice, named **reciprocal lattice**

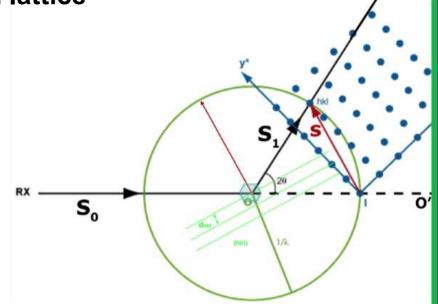
$$\vec{s} = h \cdot \vec{a}^* + k \cdot \vec{b}^* + l \cdot \vec{c}^*$$

with
$$\vec{a}^* = \frac{\vec{b} \wedge \vec{c}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}$$
, $\vec{b}^* = \frac{\vec{c} \wedge \vec{a}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}$, $\vec{c}^* = \frac{\vec{a} \wedge \vec{b}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}$

 $\vec{a} \cdot \vec{b} \wedge \vec{c}$: cell volume

$$|\vec{\mathbf{s}}| = |\vec{\mathbf{s}}_1 - \vec{\mathbf{s}}_0| = \frac{2\sin\theta}{\lambda}$$

$$2\frac{1}{|\vec{s}|}\sin\theta = 2 d \sin\theta = \lambda (Bragg's law)$$



How we get the "image" from a diffraction spectra

Electron density calculation

A Fourier transform

Seneral case:
$$\rho(\vec{r}) = \sum_{J} f_{J}.\delta(\vec{r} - \vec{r}_{J}) = \int_{\text{rec.vol.}} F(\vec{s}) \exp[-2i\pi \vec{r}.\vec{s}].d\vec{s}$$

> Crystal:
$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}]$$

What is a Fourier transform?

Example of a crystal

$$\rho(\vec{r}) = \sum_{J} f_{J}.\delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r}.\vec{s}]$$

- The electron density is a complex function depending on the nature of your molecule
 - If the molecule is in a crystal, the electron density is periodical
- A way to describe it as a sum of well known functions
 - Sinus or cosinus
 - Structure factors represent the coefficients of these sinus/cosinus functions

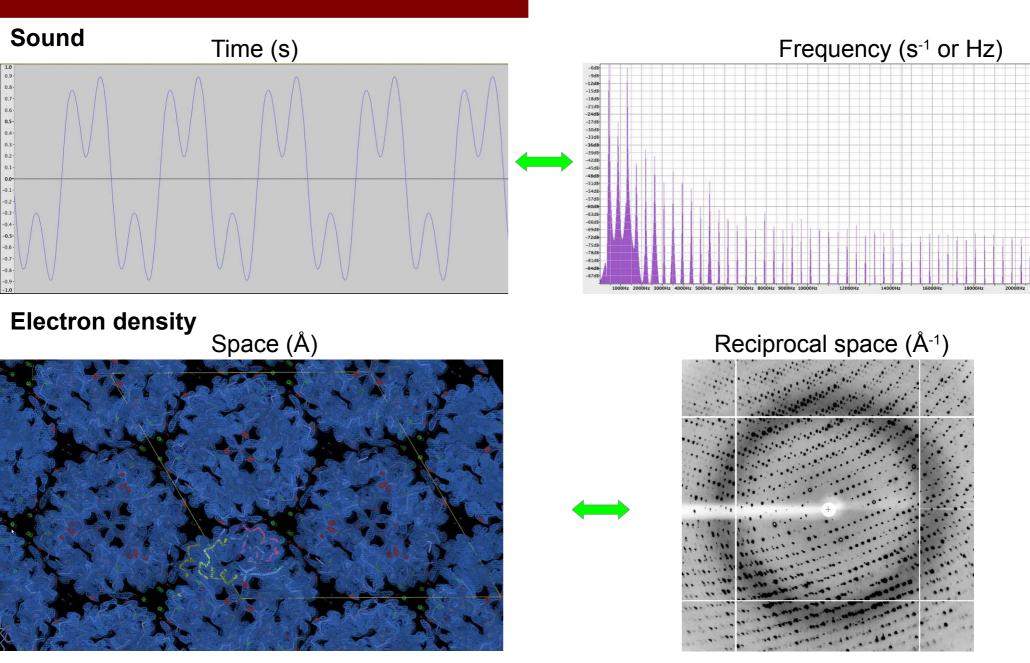
What is the meaning of F(s)?

- A parallel with sound
 - The sound can be described as the acoustic pressure as a function of time
 - The Fourier transform is the analysis of the frequencies present in your sound
 - One can describe the sound as a sum of different frequencies
 - The higher frequencies, the more detailed is the sound
 - Parallel with resolution

•

- Let try a real time analysis
 - Live with AudioXporer

Parallels between sound and electron density



Go back to electron density

- Equivalence Sound <=> Electron density
 - Pitch <=> unit cell dimensions
 - Instrument sound <=> molecule's electron density

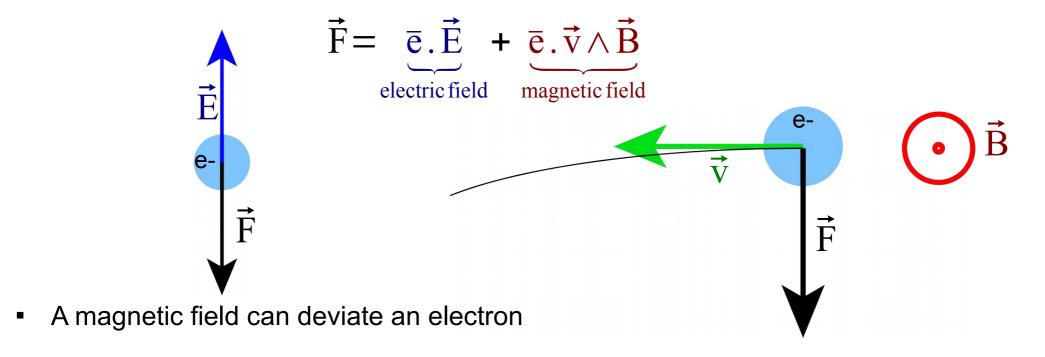
$$\rho(\vec{r}) = \sum_{h,k,l} F(h.\vec{a}^* + k.\vec{b}^* + 1.\vec{c}^*) \exp[-2i\pi \vec{r}.(h.\vec{a}^* + k.\vec{b}^* + 1.\vec{c}^*)]$$

- The reflection (1,0,0) is the coefficient for or sinusoidal function, the period of which is the a axis
- Higher indices correspond to higher spatial frequencies, i.e. to periods which are fractions of the a axis
- The higher you go in indices (h,k,l), the higher is the resolution (1/d):

$$|\vec{s}| = |h.\vec{a}^* + k.\vec{b}^* + 1.\vec{c}^*| = \frac{1}{d}$$

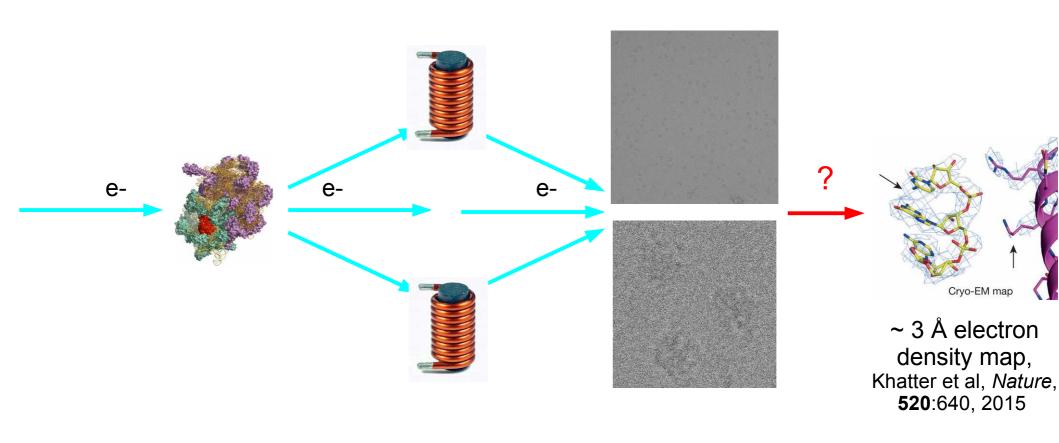
Electrons: Imaging or diffraction?

Both the electric and the magnetic field induce force on the electron



- A lens can be made for electrons with magnet
 - First one made in 1929 (Ruska & Knoll)

Direct imaging of the molecule



Not possible for neutrons

- No lens available for neutrons
 - Diffraction spectra
- If you manage to measure the amplitude and to get the phase of the wave for each reflection on the detector
 - > A Fourier transform enable to calculate the distribution of nucleus of your molecule

$$\sum_{J} \sigma_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}]$$

- Scattering cross section for H and D are very different
 - Deuteration can be useful

To conclude

- X-rays & Neutrons
 - \rightarrow Diffraction => F(hkl) + φ (hkl) => electron density map
 - Small angle scattering => ab-initio modeling (fit whith scattering curve)
- Electrons
 - Direct imaging => Coulomb potential map
 - \rightarrow Diffraction => F(hkl) + φ (hkl) => Coulomb potential map
- NMR
 - Gather structural information (local interatomic distance, ...) => search for models that satisfy the data.