

Observed amplitu	des from me	erg	ed	inte	ensitie	S						
	Ur	niqu	e re	eflec	tions in	the a	ı.u.					
		h	k	1	F	SIGF						
						0.00						
		0	0	2	-1.00	0.00						
		0 0 3 -1.00	0.00									
	ata scaling	0	0	4	101.12	6.29						
	nd merging	0	0	5	5087.18	868.91						
		0	0	6	-1.00	868.91	PHI missin	ia				
1 1 1		0	0	7	-1.00	868.91	2005	3				
1 1 1 1 1 1		0	0	8	712.77	26.26						
The second se		0	0	9	251303.12	24365.59						
		0	igue reflections in the a.u. k I F SIGF 0 0 1 0.00 0.00 0 0 2 -1.00 0.00 0 0 2 -1.00 0.00 0 0 3 -1.00 0.00 0 0 4 101.12 6.29 0 0 4 101.12 6.29 0 0 5 5087.18 868.91 0 0 6 -1.00 868.91 0 0 7 -1.00 868.91 0 0 9 251303.12 24365.59 0 0 11 -1.00 24365.59 0 0 12 374.42 11.63									
Data collection		0	0	11	-1.00	24365.59						
$I_{abc}(hkl) = F^2(hkl)$		0	0	12	374.42	11.63						
		••••										
		••••										
		36	20	1	239.06	4.01						
	resolution li	/ˈ mit										

Crystal of an unknown structure		1. Phasing by molecular replacement
2	X-ray	Experimental Fobs
Homologous of coordinates x _i ,y _i ,z _i		<i>e.g.</i> a protein of known structure homologous in sequence to the query (Id>30%) and detected from the PDBaa with BLAST
Resulting electron density map	FT-1	Calculation of FT ⁻¹ (Fobs, ocalc)
		Remark : calculation of FT ⁻¹ (Fobs- Fcalc, ∳calc) gives the cat's tail

• The Patterson function is the FT⁻¹ of intensities

$$P(\mathbf{u}) = \frac{1}{V_c} \sum_{\mathbf{h}} |F(\mathbf{h})|^2 \exp(-2\pi i \mathbf{h} \cdot \mathbf{u}) \text{ with } \mathbf{u} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$$

· It is also equivalent to the electron density convolved with its inverse:

$$P(\mathbf{u}) = \rho(\mathbf{r}) \otimes \rho(\mathbf{-r})$$

· Considering that a macromolecular structure is made of point atoms of Z electrons

$$\rho(\mathbf{r}) = \sum_{j} Z_{j} \delta(\mathbf{r} - \mathbf{r}_{j}) \qquad P(\mathbf{u}) = \sum_{j} \sum_{j} Z_{j} Z_{j'} \delta(\mathbf{u} + \mathbf{r}_{j} - \mathbf{r}_{j'})$$

The unit cell of the Patterson function contains N²-N+1 peaks of height $Z_j Z_{j'}$ positioned on interatomic vectors **r**j'-**r**j. This function has **centrosymmetry** and the high peak at the origin corresponds to the interatomic vector of each atom with itself

Crystallographic assessment and refinement

An essential validation of the 3D crystal structure is the confidence factor $\mathbf{R}_{\text{factor}}$

$$R = \frac{\sum_{hkl} ||F_{obs}| - k|F_{calc}||}{\sum_{hkl} |F_{obs}|}$$

To avoid bias, a second confidence factor, \mathbf{R}_{free} , is calculated on 5% of the data, which are not included in the restrained positional refinement

 $R_T^{\text{free}} = \frac{\sum\limits_{hkl \in T} ||F_{\text{obs}}| - k|F_{\text{calc}}||}{\sum\limits_{hkl \in T} |F_{\text{obs}}|}$

HEADER	H	YDROL	ASE ((J−G:	LYC	JSYL)				20)–JA	N-92	1HEW			
COMPND	2 1	MOLEC	ULE:	HE	N EC	GG WHITE	LYS	OZYMJ	E;							
JRNL		AUTH	J	.c.	CHEF	ETHAM, P.J	J.AR'	TYMI	JK,D	.C.PHI	íLLI	PS				
REMARK	2 1	RESOL	UTIO	Ν.	1	1.75 ANG:	STRO	MS.								
DBREF	1HEW	A	1	121	9 t	JNP P(J069	8 J	LYC_(CHICK		19	14	7		
SEQRES	1 1	A 12	9 L?	YS 1	VAL	PHE GLY	ARG	CYS	GLU	LEU F	ALA	ALA AI	LA MET	LYS		
SEQRES	2 1	A 12	9 AF	RG F	HIS	GLY LEU	ASP	ASN	TYR	ARG (βLY	TYR SE	ER LEU	GLY		
HET	NAG	A 20	1		15							•				
HET	NAG	A 201	2	, i	14		po:	sitio	ns)	K, Y, 1	Z ir	۱A	0	ccupancy	1	
HET	NAG	A 20	3	, i	14					1				/ ' '		
HETNAM	. 1	NAG N	-ACE	ΓYL·	-D-C	GLUCOSAM?	INE									
CRYST1	78	.860	78	.861	0	38.250	90.	00	90.0	0 90	.00	P 43 🖌	21 2	8		
ATOM	1	N	LYS	А	1	3	.398	9	.981	10.4	408	1.00	30.48		Ν	
ATOM	2	CA	LYS	А	1	2	.459	10	.365	9.3	364	1.00	28.03	N	С	
ATOM	3	С	LYS	А	1	2	.458	11	.880	9.1	149	1.00	21.93	\mathbf{X}	С	
ATOM	4	0	LYS	А	1	2	.481	12	.672	10.1	100	1.00	14.10	tempera	tere	facto
ATOM	5	CB	LYS	А	1	1	.026	9	.935	9.6	595	1.00	30.54	Å 2	C	-2 -1
ATOM	6	CG	LYS	А	1	0	.028	10	.169	8.5	558	1.00	37.93	A- :	-€Ŏ I	∏- <(
ATOM	7	CD	LYS	А	1	-1	.415	10	.089	9.0	J48	1.00	33.23		С	
ATOM	8	CE	LYS	А	1	-2	.357	10	.822	8.0	J82	1.00	32.17		С	
ATOM	9	ΝZ	LYS	А	1	- 3	.661	10	.090	8.0	J25	1.00	31.92		Ν	
ATOM	10	N	VAL	А	2	2	.429	12	.232	7.8	380	1.00	17.30		Ν	
ATOM	11	CA	VAL	A	2	2.	.395	13	.653	7.4	165	1.00	14.47		С	
ATOM	1000	CD2	LEU	A	129	-13	.441	19	.891	8.9	982	1.00	29.73		С	
ATOM	1001	OXT	LEU	Aí	129	-17	.993	19	.662	8.4	107	1.00	31.81		0	
TER	1002		LEU	A í	129											
HETATM	1003	C1	NAG	A í	201	5.	.991	25	.237	25.9	980	1.00	32.10		С	
HETATM	1004	C2	NAG	A í	201	4.	.850	24	.302	26.4	155	1.00	29.05		С	
HETATM	1005	С3	NAG	A í	201	4.	.046	24	.991	27.5	338	1.00	14.31		С	
HETATM	1006	C4	NAG	Α 2	201	5.	.038	25	.548	28.6	518	1.00	41.63		С	
HETATM	1046	0	HOH	Α :	204	-16	.295	29	.471	0.5	511	1.00	18.64		0	
HETATM END	1047	0	НОН	A 2	205	-1,	.660	14	.995	1.6	559	1.00	45.86		0	

In crystallography, uncertainty in the positions of atoms increases with disorder in the macromolecular crystal.
Resolution represents the average uncertainty for all atoms
In contrast, the *temperature factor* or *B factor* quantitates the uncertainty for each atom. A high temperature factor reflects a low empirical electron density for the atom, and *vice versa*.
The B-factor is given by B_j=8 π² <U_j²> where <U_j²> is the mean square displacement of atom j. As U increases, the B-factor increases and the contribution of the atom to the scattering is decreased. exp(-B_j sin² θ)
For a B-factor of 15 Å², the mean square displacement of an atom from its equilibrium position is 0.4 Å, and 0.9 Å for a B-factor of 60 Å².

