What can be seen with a transmission electron microscope

Ottilie von Loeffelholz Klaholz Group, IGBMC Strasbourg

The transmission electron microscope

Thungsten filament

apertures

- vacuum: ~10⁻⁶ Pa
- potentially high electron dose
- potentially high resolution
 (λ≈ 0.027Å at 200kV)
- i.e. <u>not limited by the</u>

<u>wavelength</u> or the optical system

Slide from Bruno Klaholz

Field emission gun (FEG) electron microscope (Tecnai20, IGBMC)

Image formation with an electron microscope

Orlova and Saibil, Chem. Rev., 2011

Electron microscopy techniques Negative staining

1) adsorption

2) wash with 2% uranyl acetate

3) air-dry

Heavy metal stains: ammonium molybdate, uranyl acetate, uranyl formate, phosphotungstic acid (PTA), auroglucothionate and others ...

> Drawn by J-F. Ménétret Slide from Bruno Klaholz

Electron microscopy techniques Negative staining

- Fast
- Technique for low resolution information
- 3D reconstruction is a "shell"
- Good for screening

Joachim Frank, Quaterly Reviews of Biophysics, 1990

Electron microscopy techniques Shadowing technique of supercoiled DNA

Patrick Schultz

- Heavy atoms evaporated on a sample under an angle

Slide from Bruno Klaholz

Electron microscopy techniques Cryo electron microscopy Purified human ribosomes

Khatter *et al.*, *Nucl. Ac. Res.*, 2014 - Full preservation of sample in vitreous ice, potential to reach high resolution *Slide from Bruno Klaholz*

Electron microscopy techniques electron diffraction – 2D

Plisson *et al.* (2003); *JBC*, **278**, 23753–23761.

Ruprecht et al. (2004); EMBO, 23, 3609-3620

Slide from → e.g. transmembrane helices visible Bruno Klaholz Limitation of 2D crystals: usually <u>anisotropic</u> resolution

Electron microscopy techniques electron diffraction – 3D

Lysozyme nanocrystal seen in TEM

-May be alternative to X-ray crystallography

Diffraction of lysozyme

Clabbers et al., Acta Cryst D, 2017

Electron microscopy techniques Tomography – plastic embedding

- Fast freezing that prevents ice formation in thicker samples
- Limited resolution, artifacts from sectioning?

Leica Microsystems, MiTeGen

Electron microscopy techniques cryo electron tomography in cells

- Great potential of the technique, but very tidious

Rigort, PNAS, 2012

Changing focus in the microsocope

Slide from Igor Orlov

The contrast transfer function (CTF)

Contrast transfer function (CTF)

The defocus image is <u>convoluted</u> by the CTF Result:

- spreading of each pixel over a bigger surface
- Inversion of contrast of some pixels

Slide from Igor Orlov

Deconvolution of the CTF: Fourier transform in image processing

Images taken from: https://spider.wadsworth.org/spider_doc/spider/docs/exa/pw.html

Power spectrum = Amplitude spectrum

Real image

Power spectrum

Orlova and Saibil, Chem. Rev., 2011

Changing focus in the microsocope

Contrast generation by Defocussing

-1.5 µm

Dubouchet, Quaterly review of Biophysics, 1988

Objects seen in Fourier space

Layer lines: Tubulin is 40 Å big and Kinesin binds every 80 Å on the MT lattice

von Loeffelholz et al., Nature Comm., 2017

Image contrast in cryo-EM

Amplitude contrast (inelastic scattering, absorption)

Slide from Bruno Klaholz

Contrast generation with phase plates

von Loeffelholz and Klaholz, 3rd Edition Meth. in Mol Biol. –Structural Proteomics, submitted; von Loeffelholz, JSB, 2017

Contrast generation with phase plates

With phase plate in focus

Without phase plate -1.6 µm defocus

Danev et al, Elife, 2016

Cryo electron microscopy

$\downarrow \downarrow \downarrow$

Joachim Frank, Annu. Rev. Biophys. Biomol. Struct. 2002

Electron micrograph of particles

von Loeffelholz et al, PNAS, 2015

Class averages of particles

representative views of the 70S / RF2 complex; Klaholz et al., Nature 2003.

Angle assignment to the class averages or individual particles

Slide adapted from Bruno Klaholz

Backprojection – 3D Reconstruction

Slide adapted from Igor Orlov