Structural biology in situ Cryo-Electron Microscopy of the Cell

Amélie Leforestier, Laboratoire de Physique des Solides, UPS, Orsay

Laboratoire de Physique des Solides 🔍 UMR 8502 Université Paris sud bât 510 🖋 91405 Orsay dedex

Outline

SAMPLE PREPARATION

- vitrification of massive hydrated specimens
- thinning specimens(electron lucent)

IMAGING

- a new cellular landscape
- 3D structures of unique objects: cryo-tomography
- targetting molecules of interest: cryoCLEM

OTHER CRYO-IMAGING METHODS

• cryoSTEM

• cryo X ray microscopy

Vitrification

Cooling rate > crystallisation

 $\Delta T = T_{ho} - T_{g}$

	100 % water	70% water	
1 bar	10 ⁵ -10 ⁶ Ks ⁻¹	10 ⁴ Ks ⁻¹	
2045 bars	10 ⁴ Ks ⁻¹	10 ^{2 -} 10 ³ Ks ⁻¹	

Dubochet et al, 1988; Studer et al, 2001 ; Vanhecke et al, 2007

	100 % water	70% water
1 bar	10 ⁵ -10 ⁶ Ks ⁻¹	>10 ⁴ Ks ⁻¹
2045 bars	10 ⁴ Ks ⁻¹	>10 ²⁻ 10 ³ Ks ⁻¹

+ nucleation & growth of ice crystals in deep zones = exothermic process, which in turn slow down cooling rate (Escaig, 1982)

	100 % water	70% water
1 bar	10 ⁵ -10 ⁶ Ks ⁻¹	>10 ⁴ Ks ⁻¹
2045 bars	10 ⁴ Ks ⁻¹	>10 ² -10 ³ Ks ⁻¹

No pure water bulk vitrification Water content ≥ 80 %

Addition of cryo-protectants

glycerol glucose threhalose toxicity sectionning imaging

	100 % water	70% water
1 bar	10 ⁵ -10 ⁶ Ks ⁻¹	>10 ⁴ Ks ⁻¹
2045 bars	10 ⁴ Ks ⁻¹	>10 ² -10 ³ Ks ⁻¹

@ 1 bar

@ 2045 bar

Plunge Freezing
(ethane)Slam Freezing
(helium)High Pressure Freezing
(HPF)1-3 μmJet freezing ?
(ethane)10-20 μm100-200 μm

Problems ?

Vitreous does not (always) mean the native state is preserved

Voyage through water poly(a)morphs ?

Tulk et al, Nature 2019

Problems, ... and perspectives ?

✓ Transitions upon pressure changes
✓ Transitions upon temperature changes
✓ Transitions upon beam irradiation

Check the state of water of your sample !

Temperature (K)

Obtaining a thin (electron lucent) specimen

Cryo-FIB milling

Cryo-sectioning Cryo-Electron Microscopy Of Vitreous Sections

Cryo-FIB milling

Cells deposited/cultured on grids

Schaffer et al (2017) JSB, 197

lamella thickness ≥ 100-150 nm

Cryo-FIB milli

Cells deposited/cultured on grids

Cryo-FIB milli

Cells deposited/cultured on grids

Cryo-FIB milling

Multicellular tissues & organisms: « lift out »

Mahamid et al (2015) J. Struct. Biol. 192, 262-269 Hsieh et a (2014) J. Struct. Biol, 185, 32-41, 2014 Harapin et al (2015) Nature methods, 12, 634-636.

CEMOVIS

https://www.youtube.com/watch?v=d3tHAWde1GQ

Bouchet-Marquis et al (2007) Biol. Cell, 99, 45

1

3

6

2

CEMOVIS: adhesion, flatness

Electrostatic press

CEMOVIS: Problems & artefacts

- knife marks (1)
- chatter (2)
- crevasses (3)

nature specimen relative orientation molecules/section <u>thickness</u>

compression

CEMOVIS: Compression ?

- nature of the specimen
- width of the specimen
- thickness

cutting direction

- scale

Intermolecular spacing

CEMOVIS: compression ? Nucleosomes

Pierson et al, JSB, 2011

high resolution information 7.9 Å

Sader et al, Ultramicroscopy 2009

Pros & cons

Cryo-sectioning versus cryo-FIB milling?

Technically demanding	YES	NO (?) / YES for tissue
Surface artifacts	YES crevasses (e ≥ 75nm)	(YES)
Bulk artifacts	YES compression	NO
Serial sections	YES	NO
Surface of observation	50 x 150 μm	10 x 20 μm
Sample thickness	30 -300 (3000) nm	>150 nm
Imaging problems	YES flatness adhesion section-support	(YES) orientation for tomography

Pros & cons

Cryo-sectioning versus cryo-FIB milling?

Technically demanding	YES	NO (?) / YES for tissue
Surface artifacts	YES crevasses (e ≥ 75nm)	(YES)
Bulk artifacts	YES compression vibrating knife	NO
Serial sections	YES	NO
Surface of observation	50 x 150 μm	10 x 20 μm
Sample thickness	30 -300 (3000) nm	>150 nm
Imaging problems	YES flatness adhesion section-support - new support films (graphene ?)	(YES) orientation for tomography

A new cellular landscape

Imaging

Structural biology in situ ? SPA ? 3D structure ?

3D structure by cryo-electron tomography

✓ CTF-correction (2D, 3D)

 \checkmark

 \checkmark

Acquisition schemes

Hagen et al. JSB 2017

in-focus

Volta phase plate in-focus

in-focus

(d) Defocus Phase Contrast DPC central beam OL aperture

« Phase plates »

Volta phase plate in-focus

« Phase plates »

Volta potential phase plate for in-focus phase contrast transmission electron microscopy

/pnas.1418377111

Zero loss filtering

Zero loss filtering

- thick specimen (> 150 nm)
- tomography

JEOL 2200FS

« Volta Phase Plate » + energy filter

Conventional cryoEM 1µm defocus

VPP cryoEM In-focus + energy filter

Bacteriophage T5 (80 nm) + NP or (10 nm)

3D structure by cryo-electron tomography

✓ CTF-correction (2D, 3D)

 \checkmark

 \checkmark

« missing wedge », « missing cone »

R.I. Koning et al. / Annals of Anatomy 217 (2018) 82-96

 α max tilt angle, D object diameter, N \approx number of images(angles)

A. Guesdon et al./Journal of Structural Biology 181 (2013) 169-178

Sub-tomogram averaging

Wan, W., & Briggs, J. A. G. (2016). Cryo-electron tomography and subtomogram averaging. In *Methods in enzymology* (Vol. 579, pp. 329-367). Academic Press

« Molecular sociology »

Nuclear periphery (HeLa cell)

putative mRNA

ER-membrane

OST

TRA

10 nm

+VPP

Mahamid et al (2016) Science, 351

<u>30 nm</u>

<u>10 nm</u>

Imaging the nucleosome in its cellular context

Mikhail Eltsov Diana Grew Buchmann Institute, Frankfurt

Brain

Imaging the nucleosome in its cellular context

Eltsov et al, NAR 2018

Simulation of cryoEM nucleosomes

Nucleosome canonical structure PDB ID 1EQZ

CTF-modulated

2D projections

5-nm slices in simulated tomographic reconstructions

Can we visualise the nucleosome in its cellular context ?

A left-handed DNA superhelix

in situ

1 eqz tomography

Can we visualise the nucleosome in its cellular context ?

The nucleosome conformation in interphase nucleus is more open than the crystallographic structure.

P-distance between DNA gyres (nm)

Targetting molecules of interest ?

Electron dense clonable labels ?

Proof of concept metallothionein

Mercogliano & De Rosier, 2004 Bouchet Marquis et al, 2012 Hirabayashi et al, 2014

Toxicity Endogeneous metallothionein

Identification of macromolecules in the cellular (complex) context

Cryo-CLEM

cryo-fluorescence microscopycryo-EM/ET

Bharat et al., 2018, Structure 26, 879–886 June 5, 2018 © 2018 MRC Laboratory of Molecular Biology. Published by Elsevier Ltd. https://doi.org/10.1016/j.str.2018.03.015

Purified molecules in solution

Molecules in cells

Freezing Imaging CTF correction SPA Freezing Thinning Imaging: tomography CTF correction Tomogram reconstruction Sub-tomogram averaging

Target/detect molecule of interest

. Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W., & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. *Quarterly reviews of biophysics*, *21*(2), 129-228.

CEMOVIS

. Al-Amoudi, A., Chang, J. J., Leforestier, A., McDowall, A., Salamin, L. M., Norlen, L. P., ... & Dubochet, J. (2004). Cryo-electron microscopy of vitreous sections. *The EMBO journal*, 23(18), 3583-3588.

. Eltsov, M., Grewe, D., Lemercier, N., Frangakis, A., Livolant, F., & Leforestier, A. (2018). Nucleosome conformational variability in solution and in interphase nuclei evidenced by cryo-electron microscopy of vitreous sections. *Nucleic acids research*, *46*(17), 9189-9200.

. Dubochet, J., Zuber, B., Eltsov, M., Bouchet-Marquis, C., Al-Amoudi, A., & Livolant, F. (2007). How to "read" a vitreous section. *Methods in cell biology, 79*, 385-406. . Hsieh, C. E., Leith, A., Mannella, C. A., Frank, J., & Marko, M. (2006). Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. *Journal of structural biology, 153*(1), 1-13.

. Sader, K., Studer, D., Zuber, B., Gnaegi, H., & Trinick, J. (2009). Preservation of high resolution protein structure by cryo-electron microscopy of vitreous sections. Ultramicroscopy, 110(1), 43-47.

. Pierson, J., Fernández, J. J., Bos, E., Amini, S., Gnaegi, H., Vos, M., ... & Peters, P. J. (2010). Improving the technique of vitreous cryo-sectioning for cryo-electron tomography: electrostatic charging for section attachment and implementation of an anti-contamination glove box. *Journal of structural biology*, *169*(2), 219-225.

VITRIFICATION

. Studer, D., Graber, W., Al-Amoudi, A., & Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing. *Journal of microscopy*, 203(3), 285-294. . Studer, D., Michel, M., Wohlwend, M., Hunziker, E. B., & Buschmann, M. D. (1995). Vitrification of articular cartilage by high-pressure freezing. *Journal of microscopy*, 179(3), 321-322.

. Vanhecke, D., Graber, W., & Studer, D. (2008). Close-to-native ultrastructural preservation by high pressure freezing. *Methods in cell biology*, 88, 151-164.

CRYO-FIB Milling

. Villa, E., Schaffer, M., Plitzko, J. M., & Baumeister, W. (2013). Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. *Current opinion in structural biology*, 23(5), 771-777.

. Mahamid, J., Pfeffer, S., Schaffer, M., Villa, E., Danev, R., Cuellar, L. K., ... & Baumeister, W. (2016). Visualizing the molecular sociology at the HeLa cell nuclear periphery. *Science*, 351(6276), 969-972.

CRYO-TOMO

Myasnikov, A. G., Afonina, Z. A., & Klaholz, B. P. (2013). Single particle and molecular assembly analysis of polyribosomes by single-and double-tilt cryo electron tomography. *ultramicroscopy*, *126*, 33-39.

Wan, W., & Briggs, J. A. G. (2016). Cryo-electron tomography and subtomogram averaging. In *Methods in enzymology* (Vol. 579, pp. 329-367). Academic Press.

Hagen, W. J., Wan, W., & Briggs, J. A. (2017). Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. *Journal of structural biology*, 197(2), 191-198.

Turonova, B., Schur, F. K., Wan, W., & Briggs, J. A. (2017). Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 angstrom. *Journal of structural biology*, *199*(3), 187-195.