

Transmission Electron Microscopy

> — Electron Source 300 KV~2x10⁸ m/s (78% of *c*)

Typical magnification: 30000X - 60000X

Eyepiece Lens

 Typical dose: 10 é/Å²
 or 20x10⁸ é
 (~8x10⁻⁴ Da/é)
 ~1.75 MDa !!!

Projection Lens

Typical exposed area: $\sim 2 \mu m^2 = 2 \times 10^8 A^2$

Transmission Electron Microscopy

Typical magnification: 30000X - c0000X

Typical dose: 10 é/Å² or 20x10⁸ é (~8x10⁻⁴ Da/é) ~1.75 MDa !!!

Electron Source 300 KV

~2x10⁸ m/s (78% of c)

Projection Lens

Typical exposed area: $\sim 2 \mu m^2 = 2 \times 10^8 A^2$

Transmission Electron Microscopy

Typical magnification: 30000X - 60000X

Electron Source 300 KV ~2x10⁸ m/s (78% of c)

> Typical dose: 10 é/Å²
> or 20x10⁸ é
> (~8x10⁻⁴ Da/é)
> ~1.75 MDa !!!

Projection Lens

2m / 2x10⁸ m/s = 1 x10⁻⁸ s

Flux 20x10⁸ é/s

From: http://www.microbiologyinfo.com/differences-between-light-microscope-and-electron-microscope/

2m high

Typical exposed area: $\sim 2 \text{ µm}^2 = 2 \times 10^8 \text{ Å}^2$

Typical magnification: 30000X - 50000X

20 é flying through the column simultaneously

Transmission Electron Microscopy

> - Electron Source 300 KV~2x10⁸ m/s (78% of *c*)

> > Typical dose: 10 é/Å²
> > or 20x10⁸ é
> > (~8x10⁻⁴ Da/é)
> > ~1.75 MDa !!!

Projection Lens

2m / 2x10⁸ m/s = 1 x10⁻⁸ s

Flux 20x10⁸ é/s

From: http://www.microbiologyinfo.com/differences-between-light-microscope-and-electron-microscope/

Evepiece

Lens

Column

2m high

$$i\hbarrac{\partial}{\partial t}\Psi({f r},\,t)=-rac{\hbar^2}{2m}
abla^2\Psi({f r},\,t)+V({f r})\Psi({f r},\,t)$$

Where did we get that (equation) from? Nowhere. It is not possible to derive it from anything you know. It came out of the mind of Schrödinger.

-Richard Feynman

$$i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r}, t) + V(\mathbf{r})\Psi(\mathbf{r}, t)$$

 $V(\mathbf{r})_{microscope} + V(\mathbf{r})_{sample}$

Where did we get that (equation) from? Nowhere. It is not possible to derive it from anything you know. It came out of the mind of Schrödinger.

—Richard Feynman $e^{ix} = \cos x$

 $e^{ix} = \cos x + i \sin x
onumber \ \Psi(ec{r}) = |\Psi_0| \, e^{i \phi_0(ec{r})}$

$$i\hbarrac{\partial}{\partial t}\Psi(\mathbf{r},\,t)=-rac{\hbar^2}{2m}
abla^2\Psi(\mathbf{r},\,t)+V(\mathbf{r})\Psi(\mathbf{r},\,t)
onumber\ V(\mathbf{r})_{microscope}+V(\mathbf{r})_{sample}$$

$$e^{ix} = \cos x + i \sin x
onumber \ \Psi(ec{r}) = |\Psi_0| \, e^{i \phi_0(ec{r})}$$

$$egin{aligned} &i\hbarrac{\partial}{\partial t}\Psi(\mathbf{r},\,t)=-rac{\hbar^2}{2m}
abla^2\Psi(\mathbf{r},\,t)+V(\mathbf{r})\Psi(\mathbf{r},\,t)\ &V(\mathbf{r})_{microscope}+V(\mathbf{r})_{sample}\ &V(\mathbf{r})=|\Psi_0|\,e^{i\phi_0(ec{r})} \end{aligned}$$

$$egin{aligned} &i\hbarrac{\partial}{\partial t}\Psi(\mathbf{r},\,t)=-rac{\hbar^2}{2m}
abla^2\Psi(\mathbf{r},\,t)+V(\mathbf{r})\Psi(\mathbf{r},\,t)\ &V(\mathbf{r})_{microscope}+V(\mathbf{r})_{sample}\ &V(\mathbf{r})=|\Psi_0|\,e^{i\phi_0(ec{r})} &\phi<<1 \end{aligned}$$

$$egin{aligned} &i\hbarrac{\partial}{\partial t}\Psi(\mathbf{r},\,t)=-rac{\hbar^2}{2m}
abla^2\Psi(\mathbf{r},\,t)+V(\mathbf{r})\Psi(\mathbf{r},\,t)\ &V(\mathbf{r})_{microscope}+V(\mathbf{r})_{sample}\ &V(\mathbf{r})=|\Psi_0|\,e^{i\phi_0(\vec{r})}\ &\phi<<1\ &\Psi(\mathbf{r})=|\Psi_0|+|\Psi_0|\,i\phi_0(\mathbf{r}) \end{aligned}$$

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r}, t) + V(\mathbf{r}) \Psi(\mathbf{r}, t)$$

$$V(\mathbf{r})_{microscope} + V(\mathbf{r})_{sample}$$

$$e^{ix} = \cos x + i \sin x$$

$$\Psi(\vec{r}) = |\Psi_0| e^{i\phi_0(\vec{r})} \qquad \phi << 1$$

$$\Psi(\mathbf{r}) = |\Psi_0| + |\Psi_0| i \phi_0(\mathbf{r})$$

$$\varphi << 1$$

$$\Psi(\mathbf{r}) = |\Psi_0| + |\Psi_0| i \phi_0(\mathbf{r})$$

Þ

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\mathbf{r}, t) + V(\mathbf{r}) \Psi(\mathbf{r}, t)$$

$$V(\mathbf{r})_{microscope} + V(\mathbf{r})_{sample}$$

$$e^{ix} = \cos x + i \sin x$$

$$\Psi(\vec{r}) = |\Psi_0| e^{i\phi_0(\vec{r})} \qquad \phi << 1$$

$$\Psi(\mathbf{r}) = |\Psi_0| + |\Psi_0| i\phi_0(\mathbf{r})$$

$$I(\theta) = \delta(\theta) + \phi_0(\theta) \sin(\chi(\theta)) \qquad \text{Fourier plane} \qquad \text{Lens} \qquad \text{Trage plane} \qquad \text{Trage plane$$

a = c . cos(2Θ) c = a / cos(2Θ)

$$\chi = (2\pi/\lambda) \Delta Z (\Theta^2/2)$$

$\chi = (2\pi/\lambda) \Delta Z (\Theta^2/2)$ $I(\theta) = \delta(\theta) + \phi_0(\theta) \sin(\chi(\theta))$

$\chi = (2\pi/\lambda) \, \Delta Z \; (\Theta^2/2)$

$I(\theta) = \delta(\theta) + \phi_0(\theta) \sin(\chi(\theta))$ $I(\theta) = \delta(\theta) + \phi_0(\theta) \sin(2\pi/\lambda \Delta Z \theta^2/2)$

Spatial frequency (1/A)