Mirjam Czjzek Research Director of CNRS

Station Biologique de Roscoff (CNRS-Sorbonne University Paris VI)

czjzek@sb-roscoff.fr

Marine Glycobiology

The algal associated « microbiome » : the metabolism of macro-algal polysaccharides

Sample preparation and crystallogenesis

ReNaFoBIS Ile d'Oléron 22.06.2019

Critical steps to success....

- Overexpression of the protein/complex
- Purification
- Grow crystals....
- Collect data
 - in the laboratory

at the synchrotron (ESRF, SOLEIL,...)

- Solve the phase problem
- Analyse the electron density and construct the model
- analyse, compare and publish

Structural Genomics Projet at AFMB : june 2001 - may 2002

courtesy by R. Vincentelli & A. Gruez

sequence analysis and various constructions of multimodular proteins

Protein families

Bioinformatic analyses

- globular proteins
- fibrous proteins
- membrane proteins
- intrinsically disordered proteins

xylanase

- multi-modular proteins
- multi-protein complexes

CBM-6 dockerin

carbohydrate esterase Protein quality already conditioned by over-expression

recon	nbinant d	or	endogenous
bact	erial expression		
advantage	"easy", in general		
	great over-expression,		
	low protease activity,		
	no post-translational	protein isol	ated from native source
	modifications	advantage	protein solubility,
			authenticity
disadvantage	protein solubility, lack		(cofactor, ions, ligand
	of post-translational		oligomeric state
	modifications,		
	yield, abundancy	disadvantage	expense/effort,
			yield, abundancy
<u>euka</u>	ryotic expression		
advantage	protein solubility		
	post-translational		
	modifications		
disadvantage	expensive, low yield,		
	proteases, time consuming	9	

Importance of the purity of the protein

Is it pure, could it be glycosylated?

Heterogenity will inhibit crystal growth Do a mass spectrum

Is it freshly prepared?

The protein may degrade/denature with time

Is it stable?

define storage temperature, add salt, glycerol, reducing agent...

solubility of protein

or the standard lab buffer is not always the best...

Protein concentration step is critical

Solubility screen

- 1) precipitate your protein (dialysis or PEG)
- 2) transfer flocculate precipitate into several tubes
- 3) add different buffer/salt solutions
- 4) measure the re-solubilized protein quantity (nanodrop)

5) next time you do Gel-filtration use this buffer for elution

Principles of crystallisation

starting phase	Crystal	small molecule	Proteins es
solid phase -> liquid phase -> vapor phase -> solution ->	solid phase solid phase solid phase solid phase solid phase	+ + +	- - - +

solvent categories : $(\epsilon = dielectric constant)$

- 1. dipolar protic solvents have $\varepsilon > 15$
- 2. dipolar aprotic solvents have $\varepsilon > 15$
- 3. non-polar and necessarily aprotic solvents have $\epsilon < 15$

Proteins \implies solvent based on H₂O (category 1, $\varepsilon = 80$)

+ additives that influence the polarity or the ε value of the solvent.

Interactions between solute and solvent

- 1. Ion-dipole 2. Dipole-dipole
- 3. hydrogen bonds 4. VDW interactions

Proteins can be considered as electrolytes (charged particles)

=> solubility decreases with size!

Aim of using precipitants

- 1. Interrupt the hydratation sphere of proteins
- 2. Decrease ϵ value of the medium to decrease effect of electrostatic screen between molecules.
- 3. Induce phase separation
- 4. establish a new free energy minimum (increase attractive charges and decrease repulsive charges).

Types of precipitants used

Salts : competition for hydratation sphere <u>Solvents :</u> decrease the dielectric constant <u>Polymers (PEG) :</u> exclusion, induce phase separation

The most often used salts

<u>Sulfate:</u>	Sodium	Ammonium	Magnesium	Lithium
<u>Citrate :</u>	Sodium	Ammonium		
<u>Chloride :</u>	Sodium	Ammonium	Potassium	Calcium
<u>Acetate :</u>	Sodium	Ammonium		
<u>Formiate :</u>	Sodium		Lithium	
<u>Phosphate</u>	: Sodium	Ammonium	Potassium	

The most often used solvents

methanol; ethanol; isopropanol; 1,3-propanediol, butanol; 2-methyl-2,4-pentanediol (MPD); 2,5-hexanol; dioxane;...

The most often used PEGs

PEG 400 - 20 000 in Mw and some methylether derivatives.

or

Precipitants 0.5 - 2 Molar 20 - 70% Additive 10-100mM

1-5%

The principals of the vapor diffusion method

<u>Others</u> : concentration of protein, temperature, purity of protein...

Screening crystallisation conditions

- most commercial kits are based on empirical analyses of a large number of example proteins (incomplete factorial)
- techniques at low scale are used to diminish the quantity of protein necessary

Vapor diffusion with hanging or sitting drop

Other techniques

3 drops for one well

High Throughput 96 Well Crystallization!

Crystallisation without contact to solid :

Dialysis

	ngui
reservoir solution	

microdialysis button

future methods : microfluidics

Strategies for crystallisation

Incomplete factorial; random screening (>< random) Variation of a single parameter (footprint) Screening in '2 dimensions'; optimisation (grid)

A : kinetics too fast

c(R)

- B : good vapor diffusion condition
- C : dialysis
- D : open batch (too fast)
- E: batch
- F: two crystal forms because of variation of concentration
- G : decrease in concentration due to precipitation \rightarrow crystals

Analysis by observation

Glas fragment

Dust

Precipitate

Skin of precipitant (PEG, $(NH_4)_2SO_4$

Phase separation

Spherolites

Needles, 'hair', urchin

Plates

nano-drop dispensing robots

drops of 100-200 nl

You can test 10 times more conditions with same amount of protein \sim 30 to 50µl

Crystal growth

McPherson et al., 2000

Seeding when nucleation is the limiting step

Micro seeding :

We streak through the drop with a cat/rabbit/horse hair → the locally provoked perturbation will enhance nucleation

<u>Macro seeding :</u>

A tiny crystal or peice of crystal is transfered into the drop the concentration should by slighly below the spontaneous nucleation limit → the deposited crystal will grow

Crystallisation of membrane proteins

Crystallisation of membrane proteins

lipid cubic phases :

For some specific mixtures lipid/H₂O one can obtain particular phases that form continuous channels of water and lipid that facilitate the crystallisation of membrane proteins

"fishing" crystals (1)

- the crystals are fragil, they have to stay in a hydrated atmosphere.
- Radiation dammage.
- or no solution found for cryoprotection.

"fishing" crystals (2)

Mounting in a cryoloop

+ glycerol ethylenglycol MPD PEG 100-400

. . . .

flash freezing in cryostream

3.

X-ray Diffraction

For our needs they're sufficiently 'good' when they diffract X-rays

Mosaicity...

+

High...

a A 14 1 81.81.81

.....

Acres 61 -----

.......

......

A Real of the second second

24. 12

.....

101

1 P

. . .

....

146.0 1

Low...

What is a crystal ?

Symmetry

 biological macromolecules are chiral. There is no natural "mirror" image.
Only a limited number of operations are possible in the crystal (65 of 230 space groupes are compatible with biological active molecules)

The 14 Bravais Lattices

Lattice planes and Miller indices

