#### The basis of Small Angle X-ray Scattering and comparison to X-ray crystallography

advantages and limits



## Plan of presentation

- Position of SAXS with respect to other structural methods
- ♦ Data acquisition and experimental setup
- Brief theory and principles of small angle X-ray scattering
- ♦ What do we measure?
- Data interpretation : modeling structures into envelopes
- comparison (and complementarity) to crystallography quality control, advantages and limits



### Overview of structural methods





#### Structural information obtained from a scattering curve

biophysical parameters (size and shape type)
molecular mass, oligomerization state and volume.

Biophysical informations derived directly from the SAXS curve

- possible low resolution molecular shape
   (ab initio methods)
- direct comparison with high resolution model
  possible model of (un)structured missing parts
  rigid body of complex
  - Structural heterogeneity
  - Flexibility of polypeptide chain
  - Iow compactness
  - non recombinant protein, or too large for RMN and too small for EM

3D structural modeling → compatible models with SAXS data

NOT a unique model, NO electron density map.

### SAS in transmission mode with 2D detector





the diffusion arises from heterogeneity of density of scattering lengths between macromolecules and the surrounding solvent

while the diffusing material and its solvent are homogenous

the waves are scattered once or not at all (no multiple diffusion)

$$I(Q) \propto \frac{d\Sigma}{d\Omega}(Q) = \left| V_p^{-1} \int_{V_p^{-1}} \rho(r) e^{-Q \cdot r} d^3 r \right|^2$$

$$Q = \frac{4\pi}{\lambda} \sin \theta$$

### The principle of X-ray diffusion



### What are we measuring?



Detector dynamic range is important – Intensity  $\sim q^{-4}$ 

### Experimental setup Argon National Lab USA

SAXS/WAXS setup at 12ID-B at APS



Important parameters to set up an experience

- (minimum 50 microL)  $\Rightarrow$  2-10 mg of protein

- Dialysis buffers + radio protectant (DTT (TCDE), glycerol, etc.)

- HPLC SEC-SAXS: exposure time 30 x 500ms



### Experimental conditions

|                                 | SAXS                                                                                                                                                                                                                                                                               |                              | Cr              | rystallography                                                                                                                                                                                            |                |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| SALS                            | SELEIL<br>AVINCHROTRON                                                                                                                                                                                                                                                             |                              |                 |                                                                                                                                                                                                           |                |
| S                               | WING                                                                                                                                                                                                                                                                               | PEX                          |                 |                                                                                                                                                                                                           |                |
| Gamme d'énergie                 | Between ~5 and 17 keV                                                                                                                                                                                                                                                              | 30                           | LEIL            |                                                                                                                                                                                                           |                |
| Résolution en énergie           | ~2 eV                                                                                                                                                                                                                                                                              | AVI                          | ACHROTRON       |                                                                                                                                                                                                           |                |
| Source                          | In-vacuum U20 undulator.                                                                                                                                                                                                                                                           | Données                      | techniques      |                                                                                                                                                                                                           |                |
|                                 | Source Size (sigma, <u>µm): 488</u> (H) x 8.1 (V)<br>Source Divergence (sigma, µrad): 14.5 (H) x 4.6 (V                                                                                                                                                                            | ) Energy range               | e (             | Between 5 KeV and 15 KeV                                                                                                                                                                                  |                |
| Optiques                        | Diaphragm at 11.7 m (1x0.5 mm <sup>2</sup> )<br>Fixed exit DCM Sitt1at 20 m                                                                                                                                                                                                        | Energy Reso                  | lution          | ~0.000075 (Si 311) - ~0.0002 (Si 111)                                                                                                                                                                     |                |
|                                 | Fixed incidence focusing KB at 22.5 m                                                                                                                                                                                                                                              | Source                       | <               | U20 In-vacuum undulator                                                                                                                                                                                   |                |
|                                 | Detector / Sample Distance : 0.5 – 8 m                                                                                                                                                                                                                                             | Flux @ first o               | optical element | White beam - depends on undulator settings                                                                                                                                                                |                |
| Environnements<br>d'échantillon | X / Z precision table<br>Stopped flow device for chemistry                                                                                                                                                                                                                         | Optics                       |                 | Kirkpatrick-Baez pair of bi-morph mirrors plus channel cut co<br>monochromator crystal                                                                                                                    | ryogenically c |
|                                 | Online HPLC for proteins in solution ( <u>SAXIER</u> project<br>High throughput sampler for proteins in solution ( <u>SA</u><br>Couette Cell (collaboration with LPS, Orsay)<br>GISAXS chamber<br>Automatic sample changer (50 samples, thermostat<br>Linkam heating stage THMS600 | AXIER project ) Sample Envir | ronment         | 3 circle ĸ goniostat (10 µm sphere of confusion)<br>6 axis robot sample changer (MSC/Rigaku ACTOR)<br>Oxford Cryosystems cryostream<br>Si drift diode energy dispersive detector plus MCA<br>measurements | for fluorese   |
| Taille du faisceau              | 450x20 um <sup>2</sup> FWHM dans la cabane expériences                                                                                                                                                                                                                             | Beam size at                 | sample          | Variable between 100x100 $\mu$ m <sup>2</sup> to 250x250 $\mu$ m <sup>2</sup>                                                                                                                             |                |
| Flux sur l'échantillen          |                                                                                                                                                                                                                                                                                    |                              | ala             | 2.0 o 1.12 Phot/c/0 075hu for 500 mA stand                                                                                                                                                                |                |
|                                 | 8.10 - ph/s @/kev, 8.10 - ph/s @16kev (a 400 mA                                                                                                                                                                                                                                    | (de courant anneau )         | Nic (           | > 2.0 e+12 Phot/s/0.0276 W 101 500 HM stored current.                                                                                                                                                     |                |
| Détecteurs                      | SAXS : PCCD170170 (AVIEX), Gain > 3ADU/ph, Noi<br>WAXS (2014) : Détecteur à pixels hybrides                                                                                                                                                                                        | ise≈2ADU Detectors           |                 | ADSC Q315r                                                                                                                                                                                                |                |
|                                 |                                                                                                                                                                                                                                                                                    | Polarization                 |                 | Linear                                                                                                                                                                                                    |                |
| Chambre de détection            | Vide primaire, positions du détecteur SAXS :<br>- 0.20 / + 0. 20 m (horiz), -0.20 / +0.20 (vert),<br>faisceau).                                                                                                                                                                    | 0.5 m / +6 m (le long du     |                 |                                                                                                                                                                                                           |                |



Limiting factors : aggregation, heterogeneity

Limiting factors : diffracting crystals, phasing signal



The measurement of diffusion often contains a lot of 'noise'

#### the diffusion vector q:

reciprocal space, inverse of a distance

<u>q=0 (determination of I(0))</u>

molecular weight (Mw), oligomerisation state and intermolecular interactions in solution

Ln I

#### Region of small q

Particle dimensions (Radius of giration)

#### Region of larger q

Particle overall shapes (polypeptide chain conformations in solution)



#### Information from small angle scattering



#### Data Analysis : Guinier law

**The radius of gyration** 
$$R_g^2 = \frac{\int_V \rho(\vec{r}) r^2 d^3 \vec{r}}{\int_V \rho(\vec{r}) d^3 \vec{r}}$$



 $\Rightarrow$  Mean square of atomic distances from center of gravity, (weighted by electron density  $\rho(\mathbf{r})$  )

Close to q=0 the scattering of a particel can be described by a Gaussian curve

Guinier Law:

$$I(q) = I(0) \exp\left(-\frac{R_g^2 q^2}{3}\right)$$



Prof. André Guinier 1911-2000 Orsay, France

The Guinier law is equivalent to a linear variation of Ln(Iq) vs  $q^2 \rightarrow Guinier$  plot A linear regression on the experimental Guinier plot directly provides Rg and Io

Ln I(q) = Ln I(0) -  $q^2 R_g^2 / 3$ 

#### Data Analysis : Guinier law



- ⇒ Determination of average dimension of the particle
- ⇒ Determination of its molecular mass

# $\bm{R_g}$ : Mean square of atomic distances from center of gravity, (weighted by electron density $\rho(r)$ )

In polymer physics, the radius of gyration is proportional to the root mean square distance between the parts of the object:
 2b
 2a



#### Relation of R<sub>G</sub> to molecular weight (Mw) – roughly linear ONLY for spherical proteins



#### **Guinier Plot: interactions & sample condition**



#### Figures from: Putnam, D., et al. (2007) Quart. Rev. Biophys. 40, 191-285.

#### Forward scattering I(0) measures molecular weight

 $MW = \frac{N_A I(0) / c}{(\Delta \rho_M)^2} \qquad I(0) \text{ at absolute scale; } c \text{ mg/ml} \\ \text{Scattering length density diff:} \quad \Delta \rho_M = \rho_M - \rho_s \\ N_A = 6.02 * 10^{23} \end{cases}$ 

- Absolute scale: calibrate with water or other standard
  - Water: 1.632x10<sup>-2</sup> cm<sup>-1</sup> at 293K

For protein on average:  $\Delta\rho_{\rm M}$  = 2.086\*10^{10} cm^{-2}

 $MW = 1385 \times I(0)/c$ 

MW in kDa; I(0) in cm<sup>-1</sup>, c in mg/ml

Orthaber, Bergmann and Glatter, J. Appl. Cryst. (2000). 33, 218

- Relative scale: secondary standard
  - Lysozyme, BSA, etc

$$MW_{p} = I(0)_{p} / C_{p} \frac{MW_{st}}{I(0)_{st} / C_{st}}$$

Standard should has same nature of the molecules to determine, and with close MW. Using multiple standards is suggested.



Data collected at 12ID-B

8 9 0.01

2

4 5 6789 0.1

q (Å<sup>-1</sup>)

### Direct information from scattering



#### Dimensionless Kratky-plot of (partially) unfolded proteins



The curve increases at large Q as the structure extends.

#### Porod law

Hypothesis : the particle has a well defined interface with the surrounding buffer and a uniform electron density



- Not precise



The maximum value on the dimensionless bell shape tells if the protein is globular. courtesy by Aurelien Thureau

#### Back to real space: distance distribution function





transform F(I(q)):

- Histogram of all existing intramolecular distances



### SAXS and P(r) of different forms



Adapted from: Svergun, D., Koch, M. (2003) Rep. Prog. Phys. 66, 1735-1782.

#### P(r) functions for different 'options' of a dimer



As well the form and the value of  $D_{max}$  vary for different options

## Humicola insolens EGV native and truncated

<u>Mw = 38 kDa N = 210+36+38 aa</u>

|                  | Rg (Å)       | D <sub>max</sub> (Å) |
|------------------|--------------|----------------------|
| Catalytic domain | 17.3 ± 0.3   | 45 ± 5               |
| EGV without CBD  | $30.0\pm0.4$ | 100 ± 10             |
| EGV full lenfth  | $33.5\pm0.5$ | 125 ± 5              |
| CBD              | 9.2          | 31                   |

Linker : ≈ 0.7 residues/Å

Distance distribution function





## Small angle scattering



- conformational modeling
- Calculation of envelopes or volumes



## Reconstruction of the 3D structure from 1D SAXS is an ill-conditioned problem



## ab initio calculation of overall shape

Fill envelope with dummy-atoms with a given diameter  $(3.8 \text{ to } 10\text{\AA})$ 



Global shape of macromolecule in solution

Respective position of sub domains (known 3D structure)

Programs DAMMIF, GASBOR (D. Svergun), DALAI\_GA (F. Diaz)

# Shape calculations

Calculation of an envelope filled with pseudo-at of variable diameter (3.8 to 10Å)



- DAMMIN/DAMMIF : Simulated annealing with constraints to minimize the surface
- → GASBOR : Simulated annealing with distance constraints of close neighbors Ø=3.8Å

(D. Svergun)

DALAI\_GA : Genetic Algorithm without external constraints
 Ø
 depends on resolution

(F. Diaz)

http://www.embl-hambourg.de/ExternalInfo/Research/Sax/software.html



#### quaternary structure in solution and complexes

#### If 3D crystal structure of each sub-unit is known

Find the respective position of each sub-unit

• SASREF : Rigid Body Modelling

(D. Svergun)



## conformational flexibility

> Comparaison of solution structure to crystal structure

CRYSOL: Calculate theoretical diffusion curve of a macromolecule taking in account the hydratation shell



Calculate the conformation of a missing loop

• CREDO & BUNCH : position of  $C_{\alpha}$  of a missing domain or portion of overall structure

(D. Svergun)



#### Comparaison of solution structure to crystal structure

#### .....more programs

Svergun D, Barberato C, and Koch M.H.J. (1995) CRYSOL – a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates.

J. Appl. Cryst. 28, 768 Most popular for BioSAXS, stand-alone program, fit model to data, fast computational algorithm http://www.embl-hamburg.de/biosaxs/atsas-online/crysol.php

Grishaev A, Guo L, Irving T, Bax A. (2010) **AXES** Improved Fitting of Solution X-ray Scattering Data to Macromolecular Structures and Structural Ensembles by Explicit Water Modeling. J. Am. Chem. Soc. 132, 15484-6.

Use explicit water modeling solvation layer, robust fitting approach http://spin.niddk.nih.gov/bax/nmrserver/saxs1/

J. Bardhan, S. Park and L. Makowski (2009) **SoftWAXS**: a computational tool for modeling wide-angle X-ray solution scattering from biomolecules J. Appl. Cryst. 42, 932-943 A program to compute WAXS, Upon request

Schneidman-Duhovny D, Hammel M, Sali A. (2010) **FoXS**: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 38 Suppl:W540-4.

Debye-like computation, web server based http://modbase.compbio.ucsf.edu/foxs/

Zuo X, Zhang R, Tiede DM. SolX: A computer program for solution molecular x-ray scattering simulations . Photosynth Res. 2009 Nov-Dec; 102(2-3): 267–279.

Debye-like computation, Windows-based, can handle non-standard atoms/residues, for biomolecules and supramolecules

Upon request zuox@anl.gov, tiede@anl.gov

### Group of Dmitri Svergun:

## EMBL HAMBURG

Biological Small Angle Scattering



### http://www.embl-hamburg.de/biosaxs/

### SAXS Forum:



http://www.saxier.org/

#### Comparison of methodological limits

SAXS



 ✓ provides envelope or overall shape average 3D conformations in solution

- ✓ needs pure samples
- Iarge quantities
- supports irradiation with time
- ✓ does not form aggregates
- "Iow resolution" no atomic information
- $\checkmark$  average of particles in solution

## crystallography



✓ provides an atomic (average)
 3D structure of the crystallized molecule

- needs pure samples
- 🗸 large quantities
- ✓ crystallizes
- ✓ produces Bragg diffraction
- $\checkmark$  no information of conformation in solution
- ✓ (almost) no information on dynamics





#### SASBDB

pro-drug approach addressing MRSA infections. Drebes J, Künz M, Windshügel B, Kikhney AG, Müller IB, Eberle RJ, Oberthür D, Cang H, Svergun DI, Perbandt M, Betzel C, Wrenger C, Sci

Rep 2016 Mar 10;6:22871 PubMed

#### SASDAX8 – Ribokinase ThiM

#### Ribokinase ThiM



| <b>MW</b> <sup>experimental</sup> | 77    | kDa             |
|-----------------------------------|-------|-----------------|
| MWexpected                        | 89    | kDa             |
| VPorod                            | 145.1 | nm <sup>3</sup> |
|                                   |       |                 |







