Introduction to biomolecular solid-state NMR

École de Biologie Structurale Intégrative RéNaFoBiS Oléron, June 2019

- Anisotropic interactions important in solid-state NMR
- Solid-state NMR techniques (and some general concepts as well)
- Applications: membrane proteins, protein fibrils, supramolecular assemblies

Zeeman splitting of nuclear spin energy states in a magnetic field B_0 :

Perturbation via a pulsed oscillating magnetic field B_1 : Fourier transform NMR (Richard Ernst, Nobel prize 1991)

Solid-state NMR: a primer

- NMR spectroscopy for systems that are
 - insoluble
 - (in principle, arbitrarily) large
 - non-crystalline (no long-range order)
 - in a native(-like) environment

such as:

- membrane proteins
- amyloid fibrils
- large assemblies (viral capsids, secretion systems, pili, ...)
- Access structure, dynamics, interactions, ... at atomic resolution

Loquet et al., Nature 486, 276, 2012

Anisotropic interactions

NMR Hamiltonian:

$$\hat{H} = \hat{H}_{\rm Z} + \hat{H}_{\rm RF} + \hat{H}_{\rm CS_i} + \hat{H}_{\rm J} + \hat{H}_{\rm CSA} + \hat{H}_{\rm D} + \hat{H}_{\rm Q} + \dots$$

- in solution: **isotropic** interactions:
 - Zeeman interaction
 - radiofrequency irradiation
 - isotropic chemical shift
 - J coupling

 \rightarrow independent of the orientation of a molecule with respect to the static B_0 field

- Anisotropic interactions:
 - chemical shift anisotropy
 - dipolar coupling
 - quadrupolar coupling (I > 1/2)

are **orientation-dependent**; **averaged out** by molecular tumbling in solution, but not in a solid sample!

¹H spectra of isopropyl-β-Dthiogalactopyranose in solution (red) and solid (blue)

http://chem.ch.huji.ac.il/nmr/techniques/solid/solid.html

- Anisotropic interactions in solid samples lead to very
 broad signals, which may yield uninterpretable spectra!
- However, they contain valuable information (local environment, internuclear distances, ...) and can be used for spectroscopic purposes (polarization transfer).
- ⇒ Challenge: obtain highresolution spectra under these conditions, yet still take advantage of the information contained in anisotropic interactions.

Anisotropic interactions

$$\hat{H} = \hat{H}_{Z} + \hat{H}_{RF} + \hat{H}_{CS_{i}} + \hat{H}_{J} + \hat{H}_{CSA} + \hat{H}_{D} + \hat{H}_{Q} + \dots$$
Chemical shift anisotropy
$$\hat{B}_{0} \wedge \hat{P}_{CS} = -\gamma \, \hat{I} \sigma B_{0}$$

$$\hat{H}_{CS} = -\gamma \, \hat{I} \sigma B_{0}$$
Dipolar coupling
$$\hat{H}_{D} = \hat{I}_{i} \, D_{ij} \, \hat{I}_{j}$$

- Spatial structure of electronic environment
- Orientation dependence
- Isotropic part visible in solution

- Interaction of magnetic
 moments of neighboring nuclei
- Dependence on orientation
 and internuclear distance
- No isotropic part averaged out in solution

Chemical shift (anisotropy)

O. Lafon, MOOC NMR Univ. Lille https://www.fun-mooc.fr/courses/lille1/54002S02/ session02/about

- B₀ field induces electron currents that generate secondary magnetic fields
- Total field felt by a nucleus results from the superposition of B₀ with these secondary fields
- Generally, electron distribution around a nucleus is not spherically symmetric
- ⇒ chemical shift of a nucleus
 depends on the
 orientation of its molecule

Chemical shift anisotropy

- Superposition of individual signals corresponding to different molecular orientations leads to the broad
 "powder pattern" observed in a static sample
- Gives information on structure of electronic environment

- CSA powder pattern reflects, e.g., on
 - symmetry
 - hybridization
 - bond lengths / angles
 - dihedral angles

of electronic environment.

• The **isotropic** chemical shift corresponds to the **barycenter** of the CSA pattern.

Laws et al., Angew. Chem. Int. Ed. 41, 3096, 2002 M. Duer: Solid-State NMR Spectroscopy. Oxford (Blackwell) 2002.

Dipolar coupling

- Interaction between the magnetic moments of two spins (cf. bar magnets influencing each other)
- Depends on internuclear distance (as 1/r³) and orientation of internuclear vector with respect to B₀
- Gives a doublet (similar as for J coupling) for a single crystal (where all internuclear vectors have the same orientation)
- ... a Pake pattern (superposition of two powder lineshapes) for random orientations
- ... and a broad hump for a network of coupled nuclei (such as the many ¹Hs in biomolecules!)

Dipolar coupling

- Information about distance between nuclei (→ 3D structure!)
- Useful for **polarization transfer** (more efficient than J coupling!)
- Affected by molecular motion
 → information on dynamics!

Fair enough, but...

 ... how do I get the resolution I need in order to be able to look at anything more complex, such as biomolecules?

http://chem.ch.huji.ac.il/nmr/techniques/solid/solid.html

Solid-state NMR techniques

Spin & space

$$\hat{H}_{\rm D}, \, \hat{H}_{\rm CSA} \propto (3\cos^2\theta - 1)$$

- The NMR Hamiltonian can be separated into a space and a spin part
- We can interfere with the spin system via either!
- The space part of CSA and dipolar coupling depends on orientation as (3 cos² θ - 1)
- In solution, rapid molecular tumbling averages out anisotropic interactions *via* this spatial dependence
- Can we do something similar for solid samples?

Magic Angle Spinning

Demers et al., Solid State Nucl Magn Reson 40, 101, 2011

- Spin sample around an angle inclined 54.74° with respect to the B₀ axis (3 cos² θ 1 = 0, space diagonal of a cube)
- by two airflows (bearing & drive) in a stator
- Need $\omega_r > 3 \omega_D$, ω_{CSA} for efficient averaging

Beckonert et al., Nat Protoc 5, 1019, 2010

Magic Angle Spinning

Laws et al., Angew. Chem. Int. Ed. 41, 3096, 2002

- Under MAS, CSA pattern "falls apart" into a series of spinning sidebands spaced at the spinning speed
- With increasing MAS speed, sidebands move out further and lose intensity until only isotropic line remains
- \Rightarrow resolution much improved!
- Network of many strong ¹H-¹H dipolar couplings in biomolecules still problematic!

- Strong ¹H dipolar coupling network precludes highresolution ¹H spectra at "normal" MAS speeds
- ⇒ detect NMR signal on, e.g., ¹³C
- ⇒ decouple ¹H using RF irradiation
- i.e. remove effect of ¹H-¹³C coupling on ¹³C spectrum by continuously rotating ¹H's in spin space
- Same principle as used in solution state, but much higher RF power used!

M. Duer, Oxford (Blackwell) 2002

Correlation spectroscopy via recoupling

- We removed (to some extent) the interactions that broaden our spectra
- However, they are **useful** for **polarization transfer** (to enhance signal, obtain information about internuclear correlations, distances...)
- How to get them back selectively?
- ⇒ use recoupling pulse sequences to "switch on" desired interactions during "mixing time" of an NMR experiment!

- Reintroduce, e.g., ¹H-¹³C dipolar coupling by simultaneous RF irradiation at ¹H and ¹³C Larmor frequencies
- RF amplitudes have to match the Hartmann-Hahn condition
- \Rightarrow obtain ¹H-¹³C polarization transfer
- ⇒ enhance ¹³C magnetization by a factor of 4! (as for INEPT transfer in solution)

$$\omega_{1I} + \omega_{1S} = \omega_r, 2\omega_r$$

Pines et al., J Chem Phys 59, 569, 1973

Recoupling pulse sequences

• A wide range of recoupling pulse sequences is available

Choose your preference:

- dipolar coupling (→ distances) or chemical shift anisotropy (→ conformation)
- heteronuclear or homonuclear
- for shorter (filtering; dynamics) or longer distances (structure)
- broad-band or chemical-shift selective

HORROR / DREAM, selective recoupling, R and C sequences, PAR / PAIN,

ω2

- Additional frequency dimension is indirectly recorded via an incremented delay
- Imprints frequencies of coupled nuclei onto signals of the 1D spectrum
- ⇒ 2-dimensional
 Fourier
 transformation

Schneider et al., Angew Chem Int Ed 49, 1882, 2010

- HSQC-type ¹⁵N-¹H correlation spectrum as used in solution is typically too broad to yield useful information in the solid state!
- → use a ¹³C-¹³C correlation map e.g. via spin diffusion / DARR
- Shorter mixing times → intraresidue correlations
- Longer mixing times → interresidue, through-space correlations

The toolbox

- High(er) resolution ¹⁵N, ¹³C detection using MAS and decoupling
- Polarization transfer ¹H-¹⁵N, ¹H-¹³C, ¹³C-¹³C, ¹⁵N-¹³C ...
- 2D, 3D, ... spectroscopy
- ... for structural analysis of biomacromolecules

Schneider et al., Angew Chem Int Ed 49, 1882, 2010 http://www.protein-nmr.org.uk/solution-nmr/assignmenttheory/visualising-3d-spectra/

 How do I identify the nuclei in my protein a peak in my spectrum comes from?

- Most common method for protein backbone resonance assignment in ¹⁵N-, ¹³C-labeled proteins:
- record a set of spectra that, ...

- Most common method for protein backbone resonance assignment in ¹⁵N-, ¹³C-labeled proteins:
- record a set of spectra that, for each amide group, ...

- Most common method for protein backbone resonance assignment in ¹⁵N-, ¹³C-labeled proteins:
- record a set of spectra that, for each amide group, give the resonance frequencies (=chemical shifts) of Cα, Cβ, CO nuclei in its own amino acid residue...

- Most common method for protein backbone resonance assignment in ¹⁵N-, ¹³C-labeled proteins:
- record a set of spectra that, for each amide group, give the resonance frequencies (=chemical shifts) of Cα, Cβ, CO nuclei in its own amino acid residue...
- ...as well as in the preceding residue!

 This way, obtain a list of the chemical shifts of all amide "spin systems" in the protein, randomly numbered

- This way, obtain a list of the chemical shifts of all amide "spin systems" in the protein, randomly numbered
- Find pairs of spin systems for which the intraresidue (i) ¹³C chemical shifts of one match the interresidue (i-1) ones of the other

- This way, obtain a list of the chemical shifts of all amide "spin systems" in the protein, randomly numbered
- Find pairs of spin systems for which the intraresidue (i) ¹³C chemical shifts of one match the interresidue (i-1) ones of the other
- ⇒ these spin systems must correspond to neighboring residues in the protein sequence!

Protein secondary structure

- As in solution, especially ¹³C **chemical shifts** are indicative of **secondary structure**
- Compare assigned values in protein of interest to **reference** / **random coil** values to obtain **secondary chemical shift**
- Identify α-helices, βstrands, turns directly from resonance assignments!

Schneider et al., JACS 130, 7427, 2008 Hiller et al., Science 321, 1206, 2008

Parenthesis: Protein structures from NMR?

C. Smet-Nocca

- Detect which nuclei are close in space via through-space correlation spectra making use of the dipolar coupling! (solution: NOESY; solid: spin diffusion, RFDR, ...)
- **Signal intensity** in those spectra encodes **distance** (albeit often imprecisely), usually up to about 6 Å
- Assemble a model that fulfils as many of these distance restraints as possible! (in silico, using a minimization algorithm)

(Kurt Wüthrich, Nobel prize 2002)

Dynamics

- NMR is sensitive to molecular dynamics on a wide range of time scales (ps - h)
- Quantify motional amplitudes and time scales in a sitespecific manner
- In solids, anisotropic interactions are affected by dynamics on all time scales faster than the inverse of the coupling strength (e.g. up to ~ µs for dipolar coupling)
- → obtain motional amplitudes by measuring build-up of signal intensity in spectrum with varying duration of a recoupling pulse sequence!

But still...

- Rather large linewidths
- Rather low signal to noise

limit what we can do with (classical) solid-state NMR!

Recent breakthroughs: deuteration and fast MAS

Chevelkov et al., Angew Chem Int Ed 45, 3878, 2006 Demers et al., Solid State Nucl Magn Reson 40, 101, 2011

- **Strong dipolar couplings** between the many **protons** present in biomolecules are a main reason for line broadening
- → use (per)deuteration to obtain very high resolution spectra already at 10 – 20 kHz MAS
- → and / or fast MAS above about 45 kHz ("fast spinning" regime)
 - can do **proton detection** (higher sensitivity), use **low RF power**, **small sample amounts**

Recent breakthroughs: DNP

- Dynamic nuclear polarization: obtain sensitivity enhancements up to, in theory, 660-fold by transferring electron polarization to nuclei using microwave irradiation
- requires a gyrotron, radicals, cryogenic temperatures

Bruker Biospin (https://www.bruker.com/service/education-training/ webinars/nmr-webinars/introduction-to-solid-state-dnp-nmr.html)

...and of course: sample preparation!

- Careful sample preparation to achieve optimal local homogeneity, as well as sufficient water content, is essential!
- and: use of alternative / reduced isotope labeling schemes
- Has proven crucial especially for studies of amyloid fibrils
- However, this kind of optimization remains some kind of black magic...

Applications I: The potassium channel KcsA-Kv1.3

The potassium ion channel KcsA(-Kv1.3)

- 4 x 160 AA tetramer
- Selectivity filter coordinates K+ ions via carbonyl groups
- Opening / closing ("gating") can be induced by pH change
- Inactivation process upon prolonged opening

Ader, Schneider et al., Nat. Struct. Mol. Biol. 15, 605, 2008

Schneider et al., JACS 130, 7427, 2008

- Channel reconstituted in liposomes (i.e. lipid bilayers!)
- Functional preparation, used in parallel for electrophysiology measurements!
- Obtain spectra of good quality (at the time, at least); resonance assignments for 60% of the protein's residues
- Fortunately, residues in functionally important regions (selectivity filter and gating region) fall outside of crowded spectral regions!

- Longer helices
- Different conformation in the selectivity filter

in lipid bilayers compared to micelles!

Transition to pH 4.0

- Global structure preserved
- However, localized chemical shift changes are clearly observed

Chemical shift changes at pH 4.0

 Largest chemical shift changes localized to selectivity filter and region around Gly99 in TM2 known as "gating hinge" in other channels

Chemical shift changes at pH 4.0

- Largest chemical shift changes localized to selectivity filter and region around Gly99 in TM2 known as "gating hinge" in other channels
- Very different results compared to micelles!

pH4 analysis: Results

pH4 analysis: Results

- TM2 helix bundle ("gate") open
- Selectivity filter non-conductive
- ⇒ open-inactivated state at pH 4

Ader, Schneider et al., Nat. Struct. Mol. Biol. 15, 605, 2008 Zhou et al., Nature 414, 43, 2001

Open probability depends on K⁺

- Open probability at pH 4 depends on K⁺ concentration
- In presence of K+, the conformation with closed TM gate and conductive selectivity filter dominates even at pH 4!

Selectivity filter and gate are coupled

- Kaliotoxin binding enforces conductive selectivity filter even without K⁺
- Conductive selectivity filter keeps TM2 gate closed even at pH 4
- \Rightarrow selectivity filter and TM2 gate are **coupled**!

Applications II: The influenza M2 proton channel

The influenza M2 proton channel

- pH-activated proton channel, involved in acidification and uncoating of virus particle as well as viral assembly
- Tetramer of four single transmembrane helices
- Targeted by adamantane-based antiviral drugs
- Crystal structure: one drug molecule binds in channel **lumen**
- Solution NMR structure: four drug molecules bind from the membrane

→ ?!?

Dilemma resolved by solid-state NMR

Applications III: Amyloid fibrils, supramolecular assemblies

The HET-s prion

- Functional fungal prion involved in self/ nonself recognition
- Structure resolved by solid-state NMR as β-helical solenoid
- First structure of an amyloid fibril (apart from fibrils formed by short peptides)!
- Dry core formed by hydrophobic residues; stabilization by salt bridges and H bond ladders

Amyloid- β and $\alpha\text{-synuclein}$

- Amyloid fibrils formed by two proteins involved in two important neurodegenerative diseases (Alzheimer's, Parkinson's) have been resolved by ssNMR
- Fibril polymorphism was a major problem in those studies!

Wälti et al., PNAS 113, E4976, 2016 Tuttle et al., Nat Struct Mol Biol 23, 409, 2016

The Salmonella type-III secretion system

- Hollow needle formed from 80 AA Prgl protein, used for injection of effector proteins into host cells
- Combination of solid-state NMR data with mass-per-length measurements by STEM and Rosetta modeling allowed for calculation of a 3D structure

Loquet et al., Nature 486, 276, 2012

Merci!