
What can we apply MSA / classifications to?

- 2D classification (reference-free alignment: only centered data, not rotationally aligned)

- alignment by classification (alignment against class averages or a typical eigenimage)

- analysis of symmetry (through symmetry in the eigenimages)

- local MSA (focus on an area with high structural variability)

- re-classification of class averages belonging to an object view

- size-classification (e.g. White et al., J. Mol. Biol. 336 (2004) 453-460).

- 3D classification of structures (separation of mixed particle populations): 

particles:3D-SC, sub-tomograms

- classification of powerspectra (sorting of defocus classes)

Important to do before MSA: - normalisation

- filtering

- centered data (aligned if for structure refinement)

- define MSA area: MSA mask



70S ribosome data set, 500 particles, 50 classes, ~10 members per class
band-pass filter: 300Å - 12Å; Imagic

Example of initial class averages:

Now find your Euler angles and start the structure…!
But will it work?



unique particle type in random orientations

Structure determination by 3D reconstruction

3D reconstruction of single particles:

Assumptions?

0,120,-60 0,120,60
0,0,0



Conformational changes of cats?
And what if we have different structures in the sample…?

Different conformations?  Cannot be averaged 

correlated movements?



- same composition

- same functional state

- same structural state, i.e. same conformational state

What means homogeneity?



Homogeneity of multi-component system / macromolecular complexes is tricky to get:

- multiple subunits / components (proteins, RNA, DNA,…)

- flexibility of the core structure

Additional, dynamic components:

- factors such as proteins, RNA, DNA binding transiently

- nucleotides (GTP +/- hydrolysable)

- ligands

Determining structures of multiple conformational states in a single sample



Determining structures of multiple conformational states in a single sample

Sample heterogeneity:

• typical problem of multi-component systems, composition & flexibility

• structure determination difficult / limits resolution

• detection of the problem: disordered 3D map; MSA

• advantage: analysis of dynamics

Structure sorting has important implications for high-resolution structural

studies and allows converting the problem of heterogeneity into an advantage by

describing structure ensembles to provide insights into the dynamics of multi-

component macromolecular assemblies.

see Klaholz, Open J. Statistics, 2015.



How to sort out heterogeneity?

 particle sorting, advanced image processing

3 different approaches:

1) reference-based, i.e. cross correlation with forward-projections of known structures

2) multivariate statistical analysis (MSA): 2D classification or 3D classification

3) maximum likelihood based class assignment

Determining structures of multiple conformational states in a single sample



1) reference-based, i.e. cross correlation with forward-projections of known structures

Determining structures of multiple conformational states in a single sample

"supervised classification":
uses projections calculated from a known 3D template (i.e. external reference)
for comparison with particle images,
assign group according to best cross-correlation coefficients, i.e. projection matching

if class membership and orientation parameters are estimated simultaneously:
"unsupervised classification" (K-means clustering, etc.) 

Practically:
use projections from several known 3D structures as references
(careful with the usage of crystal structures! use a strongly band-passed version),
run multi-reference alignment,
after a few cycles of refinement: add a reference (e.g. apo-form of a complex), iterate

e.g. Gao et al., 2004; Connell et al., 2008; etc.



1) reference-based, i.e. cross correlation with forward-projections of known structures

Determining structures of multiple conformational states in a single sample

Barat et al., Mol. Cell 2007.

example 1:



1) reference-based, i.e. cross correlation with forward-projections of known structures

Determining structures of multiple conformational states in a single sample

Loerke et al., Meth. Enzymol. 2010

example 2:

adding a reference



2) multivariate statistical analysis (MSA): 2D classification, 3D classification

Determining structures of multiple conformational states in a single sample



side-view

Determining structures of multiple conformational states in a single sample

2) multivariate statistical analysis (MSA): 2D classification, 3D classification

distinguish: orientational classification and conformational classification

Emu, Pantanal, Brazil, 8.2014



Determining structures of multiple conformational states in a single sample

2) multivariate statistical analysis (MSA): 2D classification, 3D classification

distinguish: orientational classification and conformational classification

front-view, conformation 2Emu, Pantanal, Brazil, 8.2014



local 2D MSA (focused classification)

50S view of the 70S    or 50S particle?

nom. defocus -4

70S particle 
with or without factors?

Determining structures of multiple conformational states in a single sample

Klaholz et al., Nature 2004; see Suppl. Mat.

30S        50S

local MSA

Perform 2 classifications:

(i) global MSA for classification according to particle orientations (i.e. classical class averages),

(ii) local MSA with a smaller mask for classification according to particle variability.



Senard, Argonne

Determining structures of multiple conformational states in a single sample
Local / focused classification

Senard, France, 4.~2008-10



Determining structures of multiple conformational states in a single sample

Klaholz, Open J. Stat. (2015).



Determining structures of multiple conformational states in a single sample

local 2D MSA

Klaholz et al., Nature 2004; see Suppl. Mat.

series of MSA's on particle views (class averages or extracted particles):

 allows re-classification after orientational classification



msa of classums-particles on restricted area

Image processing procedure

initial (merged) structure:
localise 3D area of disorder

3D reconstruction 3D reconstruction

reproject and append reprojections (reference 1 + 2)

sort particles according to reference number

MRA

MSA, AR, 3D MSA, AR, 3D

cross-validation
of group assignment

30S        50S

local MSA

Determining structures of multiple conformational states in a single sample

local 2D MSA

"seeding" with different structures, 
from the sample (no external refs)



set 1

set 2

group assignment by iterative cross-validation with corresponding re-projections



Procedure applied to distinct areas of the ribosome: conformational changes are correlated:



Sections through the 3D map:



P-site tRNA

E-site tRNA

tRNA translocation

Concept of 
structure sorting
is true at 10-20 Å
resolution and 
needs to be 
validated at that
resolution, 

but 
also at 2 Å 
resolution 
(e.g. multiple
side-chain
conformations
seen in crystal
structures)



Intrinsic limitations of 2D-based particle sorting:

(i) usually requires user-knowledge of the structure because some typical molecular 

views are needed to visually detect structural heterogeneity; solution: use variance map

(ii) it harbours the problem of assigning a particle image to a precise group (i.e. one 

structural state or another) across different viewing angles (addressed in part by 

automatic iteration of the cross-validation with re-projections); 

(iii) the procedure is difficult to extend to more than two different states.



MSA-based 3D classification



total: ~80.000 particles

Determining structures of multiple conformational states in a single sample

different 
conformations
of the 3D objects

Klaholz, Open J. Statistics, 2015.

Concept of 3D re-sampling and classification (3D-SC)

(here: conformational variability within a given orientation)



total: ~80.000 particles

Determining structures of multiple conformational states in a single sample

jack-knifing /
bootstrapping
(“resampling”)

Klaholz, Open J. Statistics, 2015.

Concept of 3D re-sampling and classification (3D-SC)

- jack-knifing: selection of small subsets
- bootstrapping: random selection of small subsets, part of which can be re-selected 
(resampling with replacement;
repeated random resampling is a Monte Carlo approach)

statistical resampling: 

see: Quenouille, 1949; Efron, 1979; Simon, 1969 / 1997; Good, 2005.



(preferential views)

= 180°

= 0°

= +180°

 = -180°

Particle angles plotted on sphere:

3D MSA

Determining structures of multiple conformational states in a single sample



Determining structures of multiple conformational states in a single sample

3D MSA

 does both re-sampling and 3D classification, 3D variance map;
see also work by P. Penczek (bootstrapping (re-sampling), used primarily to find region of variance, 

i.e. estimation of 3D variance)

Klaholz, Open J. Statistics, 2015.

3D reconstruction from many subsets (resampling)
3D statistical analysis and 3D classification:
3D sampling and classification (3D-SC)



total: ~80.000 particles

Addressing the structural state of reaction intermediates 

that are in equilibrium with each other!

Determining structures of multiple conformational states in a single sample

e.g.
10 000
structures

10-50
particles
per set

Concept of 3D sampling and classification (3D-SC)

Klaholz, Open J. Statistics, 2015.initially use coarsened (binned) data to speed up the process



total: ~80.000 particles

Addressing the structural state of reaction intermediates 

that are in equilibrium with each other!

40 % 28 % 10 % 8 % 14 %

no mRNA
no IF2200kV FEG data;

total 80 000 particles

resolution of 3D's: 9Å Simonetti et al., Nature, 2008.

2D  3D  4D

Determining structures of multiple conformational states in a single sample

3D MSA

Multiple states in the 30S initiation complex

3D reconstruction from many subsets (resampling),
3D statistical analysis and 3D classification:
3D sampling and classification (3D-SC)

Imagic



total: ~80.000 particles
Multiple states in the 30S initiation complex

Addressing the structural state of reaction intermediates 

that are in equilibrium with each other!

40 % 28 % 10 % 8 % 14 %

Simonetti et al., Nature, 2008.

Determining structures of multiple conformational states in a single sample

3D MSA

particle populations

Addressing the structural state of reaction intermediates 

that are in equilibrium with each other!

The 3D classification procedure 3D-SC has been used since by other groups also: 
(Papai et al., Nature 2010; Fischer et al., Nature 2010).

equilibrium constant:forward reaction rate = 
backward reaction rate = 



3D eigenimages: (30S)
3D MSA

Klaholz, Open J. Statistics, 2015.



3D class averages: (30S)

1

2

3

4

5

3D #

3D MSA

Klaholz, Open J. Statistics, 2015.



Klaholz, Open J. Statistics, 2015.

small difference found by 3D MSA
(<1% of the total mass 
of the complex;
modeled RNA Pol data)

3D MSA

Imagic



Some examples based on 2D classification or on 3D classification (3D-SC / resampling / 

bootstrapping):

Klaholz et al., 2004; White et al., 2004 (size variation);

Penczek et al., 2006; Cheng et al., 2007;

Elad et al., 2008; Simonetti et al., 2008;

Wang et al., 2013; 

Liao et al., 2015.

focused classification / focused refinement: 

concept implemented later into Relion, Frealign etc.

 analyse regions, subunit structural variations

 not limited by the number of different structural states in the sample



3) maximum likelihood based class assignment

Determining structures of multiple conformational states in a single sample

 assign particles to different 3D classes based on maximum likelihood (max. expectation)

(probability distribution; uses randomly selected references + ML-weighting)

Practically: 

random subsets are optimized and a low-resolution average structure is used as reference, 

i.e. resampling is used in combination with likelihood optimization

e.g. Scheres et al., JMB 2005; Meth. Enzymol. 2010; 

Lyumkis et al., JSB 2013

Introduction of the ML concept in cryo-EM: Sigworth, JSB 1998;

in X-ray crystallography: G. Bricogne, Acta Cryst A, 1991.



Strong heterogeneity of a reconstituted eukaryotic translation initiation (eIF5B) complex: 

sorting  5143 particles, representing 3% of the population in the sample,  6.6 Å reconstruction.

Fernández et al., Science 2013; V. Ramakrishnan & S. Scheres.

5 000 40 000 particles

Examples of ML-based 3D classification



Abeyrathne et al., eLife 2016

e.g. ML-based focused classification
of 80S / TSV IRES complex with eEF2/GDP/sordarin



Myasnikov et al., Nat. Comm. 2016.

e.g. ML-based focused classification

sorting scheme for human 80S/antibiotic complex



1) reference-based, i.e. cross correlation with forward-projections of known structures

2) multivariate statistical analysis (MSA): 2D classification or 3D classification
variance analysis + resampling, bootstrapping, 3D resampling
3) maximum likelihood based class assignment

4) deep learning methods (coming)

Possibilities to address heterogeneity:

Summary:

see also review by White et al., Biomed. Res. Int. 2017, 1032432.

Determining structures of multiple conformational states in a single sample



Conclusions & tips:

- do not assume a single state in your sample / multi-subunit complex

- consider lower symmetry (viruses etc.) to see differences between subunits

- if to use local / focused classification/refinement: use slightly larger region

- also useful in sub-tomogram averaging and 3D classifications

- consider: any sub-ensembles will not be entirely homogeneous due to 

the statistical nature of the procedures (resampling and/or ML)

- after 3D classification: go for focused refinement 

Summary:

Determining structures of multiple conformational states in a single sample



Klaholz et al., 2004.

Local MSA / focused 2D/3D classification & focused refinement:

von Loeffelholz et al., 
Curr. Opin. Struct. Biol. 2017.

see also: 
Klaholz et al., Nature 2004;
White et al., JSB 2004;
Penczek et al., JSB 2006;
Wong et al., Elife 2014;
…

Helps: use a slightly larger region than the region of interest, e.g. 30-50 Å in diameter



Advanced image processing to improve cryo-EM reconstructions and map interpretation

Klaholz et al., 2004.

Natchiar et al., Nature 2017.

Local MSA / focused 2D/3D classification & focused refinement:

von Loeffelholz et al., 
Curr. Opin. Struct. Biol. 2017.



Natchiar et al., Nature 2017.

Focused refinement
(with subtraction, Relion)

See also: von Loeffelholz et al.,  Curr. Opin. Struct. Biol. 2017.



Specific tips on focused refinement:
- works best after 3D classification / sorting

makes sure that it corresponds to a conformational / functional state, therefore

the PDB requires to deposit the low-resolution map before focused refinement

 provides a composite map

- further improves with partial signal subtraction (Bai et al., 2015)

- localized reconstruction of subunits on viruses (Ilca et al., 2015)

- subunit subtraction and focused refinement on GroEL (Roh et al., 2017)

- re-centering focused region helps (alignment quality); e.g. Blees et al., 2017

- dynamic signal subtraction (Schoebel et al., 2017)

- multi-body refinement (Nakane et al., 2018)
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