

Integrative Structural Biology Summer School 21-28 June 2019 – Oléron, France

NMR spectroscopy: Major advances and future developments Part 1: Liquid-state NMR

Catherine Bougault, IBS, Grenoble

ReNaFobis 2019

catherine.bougault@ibs.fr

The early days of NMR

1922: Stern and Gerlach prove the existence of the spin of particles

1936: Rabi measures gyromagnetic ratios (Physics Nobel 1944)

1945: First NMR signals (Bloch et Purcell, Physics Nobel 1952)

1949: Chemical shift

1961: First commercial spectrometer, Varian A60

1965-1970: Fourier transform spectrometers1972: Supraconducting coils

1971-1975: 2D-NMR idea (J. Jeener) + developments (Ernst, Chemistry Nobel 1991)

1971-1973: NMR of tissues (Damadian / Lauterbur and Mansfield, Medicine Nobel 2003) – MRI, tomography 1973-1977: MAS and CP developments for solid-state NMR

Biomolecular NMR : 35-40 years of developments

Technological innovations and developments

NMR, an intrinsically low sensitivity

Particular case of spin 1/2

 $@B_0 = 14.09T(600MHz)$

$$\vec{M} = \sum \vec{\mu} = \sum \gamma \hbar \vec{I}$$
$$\vec{M} = N \frac{\gamma \hbar B_0}{2kT} \gamma \hbar \frac{1}{2} \vec{z} = \frac{N (\gamma \hbar)^2 B_0}{4kT} \vec{z}$$

Technological innovations

High and Low Temperature Superconductors

Technological innovation: spectrometer

Technological innovations

Magnets become more compact

- Compact size and small stray field improve siting flexibility
- Outstanding stability and high-resolution NMR performance

Data courtesy of Bruker

NMR, overcoming Boltzman limitations

Sensitivity or signal-to-noise ratio

E

$$E_{\beta} = \frac{1}{2} \gamma \hbar B_{0}$$

$$\vec{M} = \sum \vec{\mu} = \sum \gamma \hbar \vec{I}$$

$$\vec{M} = N \frac{\gamma \hbar B_{0}}{2kT} \gamma \hbar \frac{1}{2} \vec{z} = \frac{N (\gamma \hbar)^{2} B_{0}}{4kT} \vec{z}$$

$$E_{\alpha} = -\frac{1}{2} \gamma \hbar B_0$$

Spins 1/2

Alternatives to increase Boltzmann? At a given field

NMR, overcoming Boltzman limitations

⇒ See talk by Robert on solidstate DNP

Dissolution DNP, as an alternative

Photo-chemically induced DNP (Photo-CIDNP)

Applications in protein folding and biomolecular interaction

Kenichiro Tateishi et al, Room temperature hyperpolarization of nuclear spins in bulk, PNAS May 2014

Technological innovations

The probe

 $M_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$

 $S/N \propto Q\eta M_O$

Q quality factor, η filling factor

Induced Signal Voltage to Noise Voltage

Receiver coil at 80 K, pre-amplifier at 20 K

Q quality factor, η filling factor

Technological innovation with cryoprobes

Low-Conductivity Buffers for High-Sensitivity NMR Measurements

Alexander E. Kelly,[†] Horng D. Ou,[†] Richard Withers,[‡] and Volker Dötsch^{*,§}

¹H / ppm

JACS, 2002

Limitations of cryoprobes

At constant quant. of matter

1.7 mm cryoprobe
 30 μL sample volume
 Liquid-state NMR

Summary of experimental conditions and results comparing ¹H-¹⁵N HSQC spectra measured on a 22 kDa PolX polymerase in different NMR tubes

	(a) Tube	5 mm	4 mm	3 mm	5 mm Shigemi
5	Total sample volume (µL)	500	300	160	250
	Sample amount in active volume (nmol)	107.4	62.7	35.0	118.8
	Estimated sensitivity gain/loss based on the sample amount in the active volume (%)	-	-41.6	-67.4	+10.6
	$\pi/2$ ¹ H pulse (µs)	16.32	12.65	10.10	16.74
	Noise estimate	233,540	198,630	156,174	229,692
5	Median of sensitivity change (%)	-	-7.5	-37.0	+15.2
	(b) Tube	5 mm	4 mm	3 mm	5 mm Shigemi
	Total sample volume (µL)	500	300	160	250
	Sample amount in active volume (nmol)	36.2	35.2	36.8	80
	Estimated sensitivity gain/loss based on the sample amount in the active volume (%)	-	-2.7	1.6	+120
	$\pi/2$ ¹ H pulse (µs)	16.25	12.23	10.09	16.83
_	Noise estimate	207,687	176,990	151,863	214,687
5	Median of sensitivity change (%)		+52.3	+104.8	+114.1

Gain with a cryoprobe

Data M.-A. Delsuc, IGBMC

Anal Chem. 2010 September 1; 82(17): 7227–7236. doi:10.1021/ac101003f.

Multiplexed NMR: An Automated CapNMR Dual-Sample Probe

James A. Norcross[†], Craig T. Milling[†], Dean L. Olson[†], Duanxiang Xu[†], Anthony Audrieth[†], Robert Albrecht[†], Ke Ruan[§], John Likos[§], Claude Jones[§], and Timothy L. Peck^{*,†}

Multiplexing Signal Router

Methodological innovations

Sensitivity enhancement by attenuation of T₂ effects

Sensitivity enhancement by attenuation of T₂ effects

1. Transverse relaxation:

Canceling opposite relaxation mechanisms (CSA-DD) => TROSY

Salzmann et al., 110-kDa protein , J Am Chem Soc. 2000, 7543–7548

Sensitivity enhancement via fast-pulsing techniques

Data acquisition is full of dead times

Sensitivity enhancement via fast-pulsing techniques

2. Longitudinal relaxation:

Only flip amideprotons and keep rest of protonsalong the z-axis to fasten T_1 -relaxation, Ernst angle excitation => SOFAST, BEST, BEST-TROSY

Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B. J Biomol NMR. 2013 Apr;55(4):311-21.

Alternative sampling methods

RéNafobi

- The use of FFT implies a linear sampling
- Alternative methods (NUS) are now proposed

M. Mobli and J.C. Hoch Progress in Nuclear Magnetic Resonance Spectroscopy 83 (2014) 21-41

(1) space-encoded excitation

(2)

spatially

homo-

geneous

mixing

(3) gradient-assisted aquisition

Technological innovations

Is NMR limited to small biomolecules?

Can we investigate large machineries with NMR?

Me-labeling tool kits for NMR

Monitoring of a molecular machine in action

¹H (ppm)

P. Macek et al. Sci Advances, 2017, e1601601

Monitoring of a molecular machine in action

Cell-free expression and combinatory isotopic labeling

Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment

Frank Löhr · Sina Reckel · Mikhail Karbyshev · Peter J. Connolly · Norzehan Abdul-Manan · Frank Bernhard · Jonathan M. Moore · Volker Dötsch

J Biomol NMR (2012)

Amino acid type	Samples				
	1	2	3		
Leucine	¹³ C/ ¹⁵ N	1- ¹³ C	1- ¹³ C		
Valine	1- ¹³ C	¹³ C/ ¹⁵ N			
Isoleucine			¹³ C/ ¹⁵ N		
Methionine	¹⁵ N				
Lysine		¹⁵ N			
Phenylalanine			¹⁵ N		
Arginine	¹⁵ N	¹⁵ N			
Tyrosine	¹⁵ N	1- ¹³ C	^{15}N		
Alanine		¹⁵ N	¹⁵ N		
Threonine	¹⁵ N	¹⁵ N	^{15}N		
Glycine	1- ¹³ C				
Aspartate			1- ¹³ C		

Technological innovations

Software development for automatic assignment

Assignment = Find mapping between expected and observed peaks.

Score for assignment

Spectrum

Presence of expected peaks

Positional alignment of peaks assigned to the same atom

Normality of assigned resonance frequencies

Optimization of assignment

Genetic algorithm combined with local optimization

GARANT

Christian Bartels et al.

- J. Comp. Chem. 18, 139-149 (1997)
- J. Biomol. NMR 7, 207–213 (1996)

Software development for automatic structure calc.

Incorporation of ambiguous distance restraints in iterative process protocols => M. Nilges, T. Herrmann

Software ARIA, UNIO

Rieping W., Habeck M., Bardiaux B., Bernard A., Malliavin T.E., Nilges M. (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381-382.

Volk, J.; Herrmann, T.; Wüthrich, K. J. Biomol.NMR. 2008, 41, 127-138..

Ambiguous restraints for soft docking

Domingez C, Boelens R, Bonvin A, J. Am. Chem. Soc. 125, 1731-1737 (2003).

- ★ Study of mechanisms of molecular recognition
- \star Study of proteins and nucleic acid excited states
- \star Study of the dynamics of very large complexes

★ In-cell NMR

★ Integration of data from different methods

Study of intrinsically disordered proteins

Miles et al., Sci. Adv. 2018, 4: eaat7778

Assessing data on non-detectable states

Assessing data on non-detectable states

Sekhar and Kay, PNAS 2013, 12867-12874

In-cell NMR: schematic overview

Deciphering interaction networks in cell

RéNafoBis

Comparison of α-synuclein in different cell lines and in vitro

Theillet, Selenko et al.., Nature 2016, 45-50

Combination of NMR with other methods for structure determination: CryoEM

Gauto et al., Nat. Com. (2019), in press