
NMR Handout

Table of content:

Annex 1.	Structure of the 20 amino acids							
Annex 2.	Averaged aliphatic carbon chemical shifts							
Annex 3.	Averaged chemical shift and standard deviation values categorized according to secondary structure type							
Annex 4.	2D and 3D ssNMR experiments							
Annex 5.	Characteristic intraresidue [¹³ C, ¹³ C]-correlation patterns in sNMR spectra for the 20 amino acids							
Annex 6.	Procedure used for predicting backbone chemical shift form a crystal structure and generating synthetic shift lists							
Annex 7.	Procedure used to plot NC and CC correlation patterns from synthetic shift lists							
Annex 8.	Deducing K_d values from chemical shift perturbation along titration in the case of a 1:1 protein-ligand complex							

Annex 2. Averaged aliphatic carbon chemical shifts

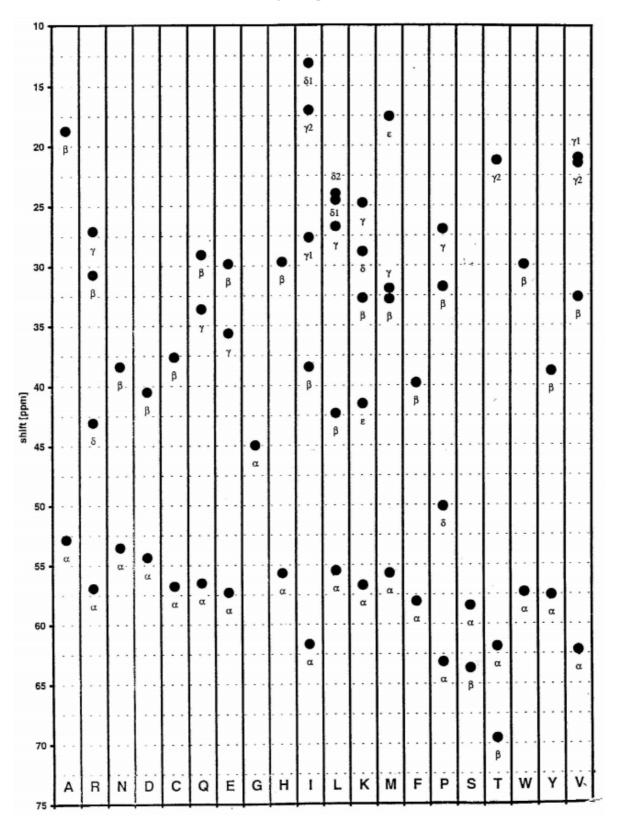


Figure taken from http://www.protein-nmr.org.uk/wp-content/uploads/2012/10/ccpnmr analysis sh3 tutorial figures.pdf

Annex 3. Average amino acid chemical shifts (in ppm) and standard deviations (in parentheses) categorized according to secondary structure type

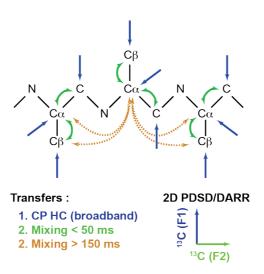
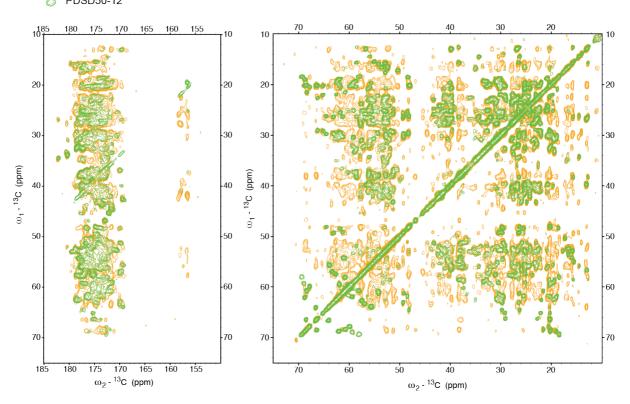
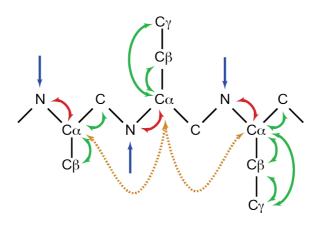

Amino	¹³ C ^α			$^{13}\mathrm{C}^{\beta}$			¹³ C′		
acid	β-strand	Random coil	α-helix	β-strand	Random coil	α-helix	β-strand	Random coil	α-helix
Ala	50.86 (1.28)	52.67 (1.76)	54.86 (0.94)	21.72 (1.77)	19.03 (1.27)	18.27 (1.08)	175.3 (1.61)	177.39 (1.45)	179.58 (1.39)
Arg	54.63 (1.50)	55.96 (1.94)	59.05 (1.21)	32.36 (1.82)	30.53 (1.77)	30.00 (0.83)	175.04 (1.18)	175.91 (1.27)	178.11 (1.70)
Asn	52.48 (1.18)	52.94 (1.43)	55.67 (0.99)	40.43 (1.89)	38.22 (1.47)	38.28 (1.12)	174.55 (1.28)	174.98 (1.38)	176.74 (1.66)
Asp	53.41 (1.15)	54.09 (1.59)	57.04 (1.00)	42.78 (1.75)	40.76 (1.34)	40.50 (1.12)	175.15 (1.54)	176.01 (1.45)	178.07 (1.80)
Cys	57.64 (1.94)	58.8 (2.06)	62.86 (1.85)	29.48 (1.97)	29.75 (1.86) ^b	26.99 (0.84) ^b	173.86 (1.83) ^a	174.77 (1.38) ^b	177.42 (1.35) ^b
	54.19 (1.64) ^a	57.68 (1.43) ^{a,b}	58.57 (1.59) ^{a,b}	43.79 (4.04) ^a	38.38 (1.39) ^{a,b}	40.02 (1.78) ^{a,b}	172.73 (1.05) ^a	175.85 (1.58) ^{a,b}	176.84 (0.47) ^{a,b}
Gln	54.33 (1.39)	55.94 (1.83)	58.61 (1.04)	31.92 (1.74)	28.67 (1.73)	28.33 (0.79)	174.58 (0.94)	175.88 (1.53)	178.35 (1.15)
Glu	55.55 (1.45)	56.39 (1.84)	59.30 (1.05)	32.45 (1.96)	30.02 (1.62)	29.20 (0.77)	175.01 (1.24)	176.11 (1.47)	178.46 (1.34)
Gly	45.08 (1.20)	45.34 (1.17)	47.02 (0.90)				173.01 (2.59)	174.30 (1.80)	176.31 (1.50)
His	54.8 (1.75)	55.78 (2.02)	59.62 (1.57)	32.2 (2.52)	29.62 (1.99)	29.91 (1.67)	173.80 (2.24)	174.88 (1.68)	176.83 (1.16)
Ile	60.00 (1.51)	60.64 (2.08)	64.68 (1.66)	40.09 (1.85)	38.26 (2.06)	37.59 (1.08)	174.79 (1.41)	175.46 (1.65)	177.49 (1.62)
Leu	53.94 (1.19)	54.85 (1.79)	57.54 (0.98)	44.02 (1.99)	41.87 (1.70)	41.40 (1.11)	175.16 (1.31)	176.61 (1.77)	178.42 (1.70)
Lys	55.01 (1.00)	56.40 (1.80)	59.11 (1.19)	34.86 (1.79)	32.57 (1.30)	32.31 (1.08)	174.93 (1.25)	176.15 (1.40)	177.79 (2.22)
Met	54.10 (1.46)	55.12 (1.79)	58.45 (1.66)	34.34 (2.44)	32.93 (3.05)	31.70 (1.72)	174.64 (1.47)	175.93 (1.54)	177.76 (1.77)
Phe	56.33 (1.31)	56.94 (1.98)	60.74 (1.63)	41.64 (1.65)	39.43 (1.93)	38.91 (1.49)	174.15 (1.93)	175.28 (1.88)	176.42 (1.74)
Pro	62.79 (1.22)	63.53 (1.26)	65.52 (1.01)	32.45 (0.93)	31.87 (0.96)	31.08 (0.84)	176.41 (1.50)	176.91 (1.72)	178.34 (1.53)
Ser	57.14 (1.11)	58.35 (1.78)	60.86 (1.27)	65.39 (1.48)	63.88 (1.24)	62.81 (0.58)	173.52 (1.55)	174.33 (1.22)	176.51 (1.40)
Thr	61.10 (1.71)	61.59 (2.04)	65.89 (1.55)	70.82 (2.11)	69.75 (1.29)	68.64 (0.98)	173.47 (1.39)	174.62 (1.45)	176.62 (1.24)
Trp	56.28 (1.52)	57.62 (1.25)	60.03 (1.94)	31.78 (1.76)	29.27 (1.10)	28.74 (1.15)	175.10 (1.80)	175.91 (1.32)	177.81 (1.62)
Tyr	56.56 (1.59)	57.72 (2.14)	61.07 (1.72)	40.79 (1.77)	38.71 (2.00)	38.38 (0.89)	174.65 (1.64)	175.32 (1.54)	177.05 (1.51)
Val	60.72 (1.59)	61.80 (2.25)	65.96 (1.39)	33.81 (1.79)	32.68 (1.76)	31.41 (0.74)	174.66 (1.36)	175.76 (1.63)	177.75 (1.49)
Amina	¹ H ^N			¹ Cα			¹⁵ N		
Amino acid	β-strand	Random coil	α-helix	β-strand	Random coil	α-helix	β-strand	Random coil	α-helix
Ala	8.59 (0.76)	8.11 (0.68)	7.99 (0.57)	4.87 (0.46)	4.25 (0.35)	4.03 (0.31)	125.57 (4.80)	132.52 (3.51)	121.65 (2.52)
Arg	8.57 (0.69)	8.17 (0.77)	8.03 (0.56)	4.85 (0.47)	4.33 (0.37)	4.00 (0.33)	122.60 (4.74)	120.59 (4.42)	118.99 (2.56)
Asn	8.70 (0.55)	8.33 (0.72)	8.20 (0.66)	5.26 (0.41)	4.60 (0.38)	4.45 (0.20)	122.70 (4.18)	118.48 (4.58)	11 7. 60 (2.37)
Asp	8.56 (0.62)	8.39 (0.66)	8.05 (0.55)	5.01 (0.36)	4.64 (0.29)	4.44 (0.22)	123.82 (4.70)	120.69 (4.45)	119.90 (2.03)
Cys	9.00 (0.45)	7.81 (0.62)	8.22 (0.53)	5.18 (0.57)	4.63 (0.37) ^b	4.16 (0.25) ^b	123.27 (5.69)	117.01 (2.50) ^b	117.47 (3.04) ^b
	8.68 (0.98) ^a	8.53 (0.59) ^{a,b}	8.58 (0.48) ^{a,b}	5.21 (0.49) ^a	4.44 (0.29) ^{a,b}	4.53 (0.18) ^{a,b}	121.81 (4.34) ^a	118.62 (4.25) ^{a,b}	119.51 (2.44) ^{a,b}
Gln	8.51 (0.83)	8.25 (0.75)	8.11 (0.52)	4.97 (0.43)	4.26 (0.39)	4.03 (0.23)	123.14 (4.89)	119.73 (3.85)	118.59 (2.59)
Glu	8.66 (0.60)	8.29 (0.53)	8.32 (0.63)	4.76 (0.44)	4.28 (0.30)	3.99 (0.21)	123.52 (4.29)	120.87 (3.94)	119.89 (2.85)
Gly	8.27 (1.06)	8.34 (0.83)	8.23 (0.78)	4.09° (0.46)	3.95° (0.40)	3.84 (0.43) ^c	110.19 (4.20)	109.94 (4.09)	107.34 (2.82)
His	8.76 (0.79)	8.09 (0.83)	8.03 (0.68)	5.07 (0.50)	4.50 (0.51)	4.06 (0.54)	121.65 (5.16)	118.87 (4.98)	118.09 (3.17)
Ile	8.74 (0.66)	7.94 (0.66)	8.06 (0.56)	4.72 (0.42)	4.13 (0.36)	3.66 (0.30)	124.12 (4.93)	121.07 (5.17)	120.22 (2.75)
Leu	8.63 (0.67)	8.12 (0.72)	8.02 (0.56)	4.85 (0.43)	4.35 (0.36)	4.00 (0.27)	125.69 (4.14)	121.53 (4.30)	120.18 (2.46)
Lys	8.54 (0.63)	8.13 (0.66)	8.04 (0.61)	4.96 (0.46)	4.28 (0.31)	3.98 (0.26)	123.29 (4.76)	121.44 (4.19)	119.90 (2.93)
Met	8.43 (0.65)	8.37 (0.51)	8.05 (0.48)	4.94 (0.48)	4.55 (0.38)	4.03 (0.35)	121.67 (4.12)	120.19 (3.46)	118.69 (2.36)
Phe	8.80 (0.70)	7.95 (0.90)	8.21 (0.66)	5.17 (0.47)	4.62 (0.42)	4.11 (0.40)	121.95 (4.38)	119.41 (4.75)	119.12 (4.05)
Pro				4.72 (0.45)	4.41 (0.30)	4.13 (0.39)			
Ser	8.57 (0.65)	8.26 (0.74)	8.11 (0.50)	5.08 (0.48)	4.48 (0.35)	4.20 (0.19)	117.44 (4.19)	115.94 (4.13)	114.78 (2.39)
Thr	8.50 (0.58)	8.22 (0.74)	8.10 (0.55)	4.81 (0.46)	4.33 (0.38)	4.02 (0.27)	118.09 (4.86)	114.41 (5.70)	115.30 (3.72)
Trp	8.83 (0.73)	7.59 (0.84)	8.24 (0.82)	5.24 (0.41)	4.54 (0.24)	4.35 (0.40)	124.04 (5.43)	120.57 (3.58)	120.48 (2.89)
Tyr	8.69 (0.73)	7.90 (0.79)	8.10 (0.70)	5.00 (0.51)	4.55 (0.45)	4.14 (0.36)	122.55 (4.70)	120.05 (4.23)	119.67 (3.19)
Val	8.73 (0.61)	7.88 (0.75)	7.99 (0.63)	4.66 (0.42)	4.14 (0.40)	3.57 (0.34)	123.27 (5.05)	119.66 (5.62)	119.53 (3.19)

Table extracted from reference: Wang Y. and Jardetzky O, Protein Sci. 2002, 11, 852-61)


^a Cys in the oxidized form.
^b Number of the chemical shifts used in the statistical analysis is less than 10. c Averaged value fro Gly.

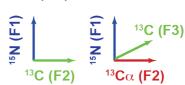
Annex 4. 2D and 3D ssNMR experiments

PDSD/DARR



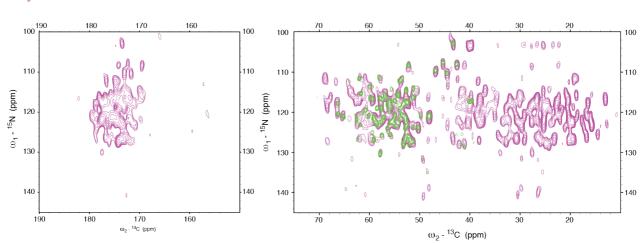
Annex 4. 2D and 3D ssNMR experiments

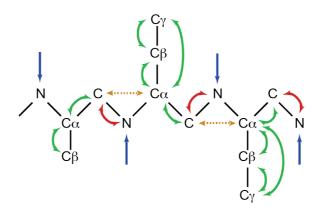
NCA/NCACX


Transfers:

d)

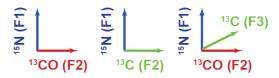
2D NCA 2D N(CA)CX 3D NCACX

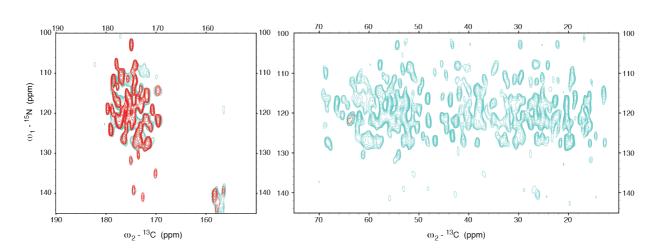

- 1. CP HN (broadband)
- 2. SPECIFIC-CP NC
- 3. Mixing < 50 ms
- 3. Mixing > 150 ms



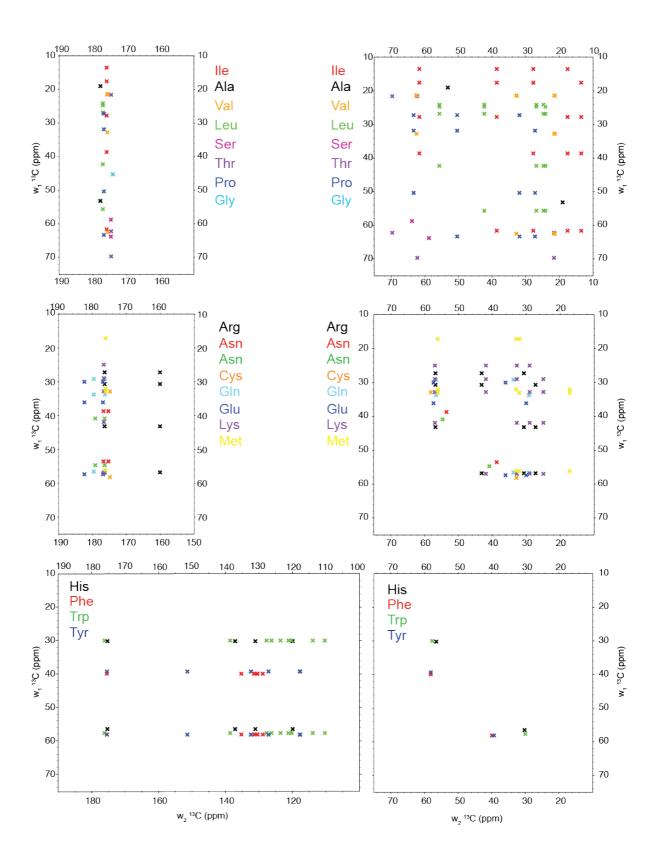
NCACX50-12

Annex 4. 2D and 3D ssNMR experiments


NCO/NCOCX


Transfers:

2D NCO 2D N(CO)CX 3D NCOCX


- 1. CP HN (broadband)
- 2. SPECIFIC-CP NC
- 3. Mixing < 50 ms
- 3. Mixing > 150 ms

Annex 5. Characteristic intraresidue CC correlation patterns for the 20 amino acids

Annex 6. Procedure used for predicting backbone chemical shift from a crystal structure

- 1. Download the PDB file: toto.pdb
- 2. Create ¹H atoms (using the software Reduce)
 - > in a terminal window, type : reduce -BUILD toto.pdb > totoH.pdb
- 3. Open the pdb file totoH.pdb and check that H atoms are present
- 4. Connect to the Sparta server + (http://spin.niddk.nih.gov/bax/nmrserver/sparta/)
- 5. Follow the instructions:
 - a. Select PDB Input file: totoH.pdb
 - b. Chemical Shift Data for Comparison (optional) > NO [Optional input table of chemical shifts and sequence information. If this table is given, the output produced by SPARTA+ will compare the shifts in this input table and the corresponding predicted chemical shifts.
 - c. Apply offset correction > NO
 - d. Generate PDF graphic >NO
 - e. Fill in the contact information (email)
 Submit
- 6. Check your email inbox, open the message from the Sparta+ server and save the 3 files : pred.tab ; struct.tab ; sparta.pdf
- 7. Generate a shift list (here, the FANDAS format <name>.txt was used) from the predicted chemical shifts indicated in the pred.tab file

8. Generate a shift list (here, the FANDAS format <name>.txt was used) from the solution NMR assignment table. (missing or unassigned resonances are labeled with a 0)

Annex 7. Procedure used to plot NC and CC correlation patterns from predicted or experimental chemical shifts

- 1. Download the shift list generated from the predicted chemical shifts (totoH-sparta-input)
- 2. Connect to the server FANDAS (http://tintin.science.uu.nl/services/FANDAS/html/main.php)
- 3. Follow the instructions for the Spectrum prediction
 - a. Predict intra-residue ¹³C-¹³Cspectrum > PDSD50 & DARR50 Save the peaklist with annotations as a <name>.peaks file
 - b. Predict sequential ¹³C-¹³C spectrum > PDSD150
 c. Predict 2D ¹⁵N-¹³CA spectrum > NCA

 - Predict 2D ¹⁵N-¹³CA-¹³CX (intra) spectrum > NCACX50

 - Predict 2D ¹⁵N-¹³CO spectrum > NCO Predict 2D ¹⁵N-¹³CO-¹³CX (intra) spectrum > NCOCX50
- 4. Now, we have generated 6 peaklists in a Sparky format <name>.peaks from the backbone chemical shifts predicted from the crystal structure by using sequentially Sparta + and FANDAS servers.
- 5. Download the shift list generated from the solution NMR assignment table (totoHsolutionNMR-input)
- 6. Repeat the same procedure
- 7. Now, we have generated 6 peaklists in a Sparky format <name>.peaks from the solution NMR backbone and sidechain chemical shifts obtained on the soluble (U-¹³C, ¹⁵N)-labeled protein.

Annex 8. Deducing K_d values from chemical shift perturbation along titration in the case of a 1:1 protein-ligand complex

$$P + L = PL$$

$$K_d = (P)(L)/(PL)$$

$$P_0 = (P) + (PL)$$

$$L_0 = (L) + (PL)$$

Inserting the latter two equations in the equation for K_d:

$$K_d = [P_0 - (PL)][L_0 - (PL)]/(PL)$$

Development of this equation leads to a quadratic equation:

$$(PL)^2 - [P_0 + L_0 + K_d](PL) + P_0L_0 = 0$$

A solution to this equation is:
$$\frac{(PL)}{P_0} = \frac{1}{2} \left(1 + \frac{K_d}{P_0} + \frac{L_0}{P_0} - \sqrt{\left(1 + \frac{K_d}{P_0} + \frac{L_0}{P_0} \right)^2 - 4 \frac{L_0}{P_0}} \right)$$

In the case of fast exchange, the observed chemical shift is the weighted average of the chemical shifts of each form of the protein (the free form and the bound form).

In other words:
$$\delta = \delta_{free} \left(1 - \frac{(PL)}{P_0} \right) + \delta_{bound} \frac{(PL)}{P_0}$$

Thus
$$\delta - \delta_{free} = \left(\delta_{bound} - \delta_{free}\right)^{\frac{(PL)}{P_0}}$$

Thus
$$CSP_{obs} = \delta - \delta_{free} = \frac{(\delta_{bound} - \delta_{free})}{2} \left(1 + \frac{K_d}{P_0} + \frac{L_0}{P_0} - \sqrt{\left(1 + \frac{K_d}{P_0} + \frac{L_0}{P_0}\right)^2 - 4\frac{L_0}{P_0}} \right)$$