

FROM UNSTABLE PROTEIN TO STABLE COMPLEXES THE HIV-1 PRE-INTEGRATION COMPLEX, STEROID NUCLEAR RECEPTORS STRUCTURE, FUNCTION AND DYNAMICS

Marc Ruff

Integrated structural biology department Chromatin stability and DNA mobility team

IGBMC, Illkirch, France

ruff@igbmc.fr

Intrinsically Disordered Proteins (IDP)

Definitions: (Keith Dunker - Indiana University)

Many proteins contain regions that lack specific 3-D structure; indeed some proteins lack specific 3-D structure in their entireties under physiological conditions and yet carry out biological function. Such proteins and regions have been called natively unfolded, intrinsically unstructured, naturally disordered, ...

H. Jane Dyson and Peter E.Wright, Nature Reviews In Molecular Cell Biology, 2005, 6, 197-208

Dunker et al, Flexible nets: The roles of intrinsic disorder in protein interaction networks, FEBS J. 2005, 272, 5129-5148)

- plasticity of the disorder regions allows the binding of multiple partners
- Few proteins bind to many partners (Hub proteins) but most proteins bind to few partners
- Many disordered regions are modified post-transcriptionaly (Phosphorylation, Acetylation, ubiquitination, proteolytic cleavage)

IDPs participate in important regulatory functions in the cell, including transcription, translation, the cell cycle, and numerous signal transduction events. Disordered proteins often undergo coupled folding and binding transitions upon interaction with their cellular targets.

The lack of stable globular structure confers numerous functional advantages, but not without cost; many disordered proteins are associated with amyloid disease and with chromosomal translocations in cancer.

Intrinsically disordered proteins occupy a continuum of "conformational space", ranging from highly unstructured, through molten globule, to local disorder within an otherwise folded domain.

While many proteins need to adopt a well-defined structure to carry out their function, a large fraction of the proteome of any organism consists of polypeptide segments that are not likely to form a defined three-dimensional structure, but are nevertheless functional. These protein segments are referred to as **intrinsically disordered regions (IDRs)**.

Proteins sequences in a genome can be viewed as modular because they are made up of combinations of structured and disordered regions. **Proteins without IDRs are called structured proteins, and proteins with entirely disordered sequences that do not adopt any tertiary structure are referred to as intrinsically disordered proteins (IDPs).** The majority of eukaryotic proteins are made up of both structured and disordered regions, and both are important for the repertoire of functions that a protein can have in a variety of cellular contexts.

IDRs and IDPs are prevalent in eukaryotic genomes. For instance, 44% of human protein-coding genes contain disordered segments of >30 amino acids in length.

Johnny Habchi; Peter Tompa; Sonia Longhi; Vladimir N. Uversky; Chem. Rev. 2014, 114, 6561-6588.

Robin van der Lee; Marija Buljan; Benjamin Lang; Robert J. Weatheritt; Gary W. Daughdrill; A. Keith Dunker; Monika Fuxreiter; Julian Gough; Joerg Gsponer; David T. Jones; Philip M. Kim; Richard W. Kriwacki; Christopher J. Oldfield; Rohit V. Pappu; Peter Tompa; Vladimir N. Uversky; Peter E. Wright; M. Madan Babu; *Chem. Rev.* **2014**, 114, 6589-6631. DOI: 10.1021/cr400525m.

Intrinsically disordered proteins: function, folding, and flexibility

Structured domains and intrinsically disordered regions (IDRs) are two fundamental classes of functional building blocks of proteins. The synergy between disordered regions and structured domains increases the functional versatility of proteins.

Robin van der Lee; Marija Buljan; Benjamin Lang; Robert J. Weatheritt; Gary W. Daughdrill; A. Keith Dunker; Monika Fuxreiter; Julian Gough; Joerg Gsponer; David T. Jones; Philip M. Kim; Richard W. Kriwacki; Christopher J. Oldfield; Rohit V. Pappu; Peter Tompa; Vladimir N. Uversky; Peter E. Wright; M. Madan Babu; *Chem. Rev.* **2014**, 114, 6589-6631. DOI: 10.1021/cr400525m.

From unstable protein to stable complexes

From unstable protein to stable complexes

Levy N, Eiler S, Pradeau-Aubreton K, Maillot B, Stricher F, Ruff M (2016). Nature Communications 7: 10932

Steroid Hormones Nuclear Receptors

Steroid hormone nuclear receptors

Steroid nuclear receptors organized into domains with IDRs

Marc Ruff, Monique Gangloff, Jean Marie Wurtz and Dino Moras. Estrogen receptor transcription and transactivation. Structure– function relationship in DNA- and ligand-binding domains of estrogen receptors. *Breast Cancer Res* 2000, **2**:353–359

Steroid hormone nuclear receptors

Luisi et al, (1991). Nature *352*, 497-505.

Gangloff et al, (2001), JBC, 276, 15059-15065.

Interaction of SNRs with TIF2 coactivator

From unstable protein to stable complexes

Levy N, Eiler S, Pradeau-Aubreton K, Maillot B, Stricher F, Ruff M (2016). Nature Communications 7: 10932

Bioinformatics analysis of the sequences: design of constructs

GR multi – alignment (jalview)

TIF2 multi - alignment

Bioinformatics analysis of the sequences of ERß GR and TIF2 : design of constructs

From unstable protein to stable complexes

Levy N, Eiler S, Pradeau-Aubreton K, Maillot B, Stricher F, Ruff M (2016). Nature Communications 7: 10932

$\boldsymbol{\mathsf{ER}}\boldsymbol{\beta}$ Expression and solubilisation tests

E. Coli expression

EDß	HIS		GS	ST	HIS-TRX		HIS-MBP	
Епр	LBS/18°C		LBS/18°C		LBS/18°C		LBS/18°C	
	Т	S	Т	S	Т	S	Т	S
FL 1 – 530	++	-	++	-	++	•	++	-
EF 255 – 530	nd	nd	nd	nd	+++	(++)	nd	nd

The optimized buffer for protein solubilization is 300 mM KCl, 100 mM Phosphate buffer pH=7.5, 10 mM β mercaptoethanol.

TIF2 Expression and solubilisation tests

	Н	IS	G	ST	MBP		
TIF2	LBS/	18°C	LBS/	18°C	LBS/18°C		
	Т	S	Т	S	Т	S	
378-828	+	+/-	+	+	+++	++	
378-1008	nd	nd	nd	nd	+++	++	
623-772	+	+	+	+	+++	+++	
623-828	+	+/-	+	+	+++	++	
623-1008	+	+/-	+	+	+++	++	

Solubilization buffer: 50mM Phosphate Na/K pH 7.5, 50 mM NaCl

From unstable protein to stable complexes

Levy N, Eiler S, Pradeau-Aubreton K, Maillot B, Stricher F, Ruff M (2016). Nature Communications 7: 10932

ER\beta / TIF2 complex reconstitution

Co-cell lysis

TIF2 binds $ER\beta$ with an induce folding mechanism

GR Expression and solubilisation tests

	HIS			FLAG			HIS-NUS					
GR (<i>E. coli</i>)	LBS/37°C		LBS/18°C		LBS/37°C		LBS/18°C		LBS/37°C		LBS/18°C	
	Т	S	Т	S	Т	S	Т	S	Т	S	Т	S
CDE 420 – 777	+/-	-	-	-	+	-	-	-	++	-	++	+
DE 486 – 777	++	-	-	-	++	-	+	-	++	-	++	++
E 516 – 777	+/-	-	+/-	-	+	-	+	+/-	++	-	++	+
E 524 – 777	-	-	-	-	+	-	++	-	++	-	++	+

GP (incast)	Н	IS	GST		
GR (Insect)	Т	S	Т	S	
CDE 420 – 777	+	-	++	+/-	
DE 486 – 777	nd	nd	++	+/-	
E 516 – 777	+	-	++	+/-	
E 524 – 777	+	-	nd	nd	

Solubilization buffer: 250 mM NaCl, 50 mM Tris pH7.5, 10 μ M dexamethasone

From unstable protein to stable complexes

Levy N, Eiler S, Pradeau-Aubreton K, Maillot B, Stricher F, Ruff M (2016). Nature Communications 7: 10932

GRtm / TIF2 complex reconstitution

Co-expression

TIF2 binds GR with an induce folding mechanism

Analytical Ultracentrifugation analysis

. 8 .

Crystallization of GR LBD + Dex

Average size : 5 – 10 μ m

Ammonium sulfate 37°C

PEG 1500 37°C

Drug design: structure with ligands (Ligand screening)

SDS gel with gradient 8-25%

Native gel with gradient 8-25%

ER alpha LBD: ligand screening

HIV-1 Pre-integration complexes

HIV phylogeny

François Charles Javaugue, VIH, ed. Hermann, 2014

HIV-1 and 2 are lentiviruses, a genus of viruses of the Retroviridae family, characterized by a long incubation period.

There are many groups and subtypes of HIV-1 virus, the predominant form in Europe is the group M subtype B.

Enveloped virus (budding from the host cell enveloped by fragment of the cell membrane)

Origin of HIV pandemic

François Charles Javaugue, VIH, ed. Hermann, 2014

Adapted from Tebit et al., Lancet, 2010

HIV-2

HIV emerged from SIV in late 19th / early 20th century through zoonosis between apes or monkeys and men: HIV-1 group M : chimpanzee (Central Africa : Cameroon, Equatorial Guinea, Gabon...)

HIV-1 group P : gorilla (Cameroon)

: sooty mangabey monkey (West Africa : Sierra Leone, Liberia, Ivory Coast...)

HIV-1 virion structure

JY Sgro, http://www.virology.wisc.edu/virusworld, 2009

Tomographic reconstruction of HIV-1 virions. Data from Briggs et al. Structure (2006) 14, pp. 15-20. EMDB #1155 - Rendered with UCSF Chimera with plastic wrap added in PhotoShop. images © 2010 JY Sgro; UW-Madison.

Tomographic reconstruction of HIV-1 virions. Data from Briggs et al. Structure (2006) 14, pp. 15-20. EMDB #1155 - Rendered with UCSF Chimera. images © 2010 JY Sgro; UW-Madison.

Alan Engelman and Peter Cherepanov, Nature Review in Microbiology, 2012, 10, 279-289

Miklos Guttman et al., J Virol. Aug 2012; 86(16): 8750–8764

HIV-1 genome organization

Structure of the HIV-1 NL4-3 genome

The 5' (**a**) and 3' (**b**) genome halves are shown. Nucleotides are coloured by their absolute SHAPE reactivities. Every nucleotide is shown explicitly as a sphere; base pairing is indicated by adjacent parallel orientation of the spheres.

Intermolecular base pairs involving the tRNA^{Lys3} primer and the genomic dimer are shown in grey.

JM Watts et al. Nature 460, 711-716 (2009)

HIV genome and viral protein structures

3 main genes coding for the viral polyproteins : **Gag**, **Pol** and **Env**. Gag => structural proteins Pol => viral enzymes Env => envelope proteins

2 regulatory genes: Tat and Rev (activation of transcription and regulation of RNA splicing and export)

Accessory genes : Vif, Vpr, Vpu, Nef

(regulation of synthesis and processing viral RNA and other functions)

Schematic diagram of HIV replication cycle

Adapted from Engelman et al., 2012

Constant need for new generations of inhibitors in AIDS treatment : Need of precise knowledge of replication mechanisms
HIV-1 pre-integration complex

Catalytic activities of HIV-1 integrase

The HIV-1 viral DNA integration

Decapsidation Reverse transcription

Nuclear import

Continuous and dynamic process

Integration

David S. Goodsell, http://hive.scripps.edu/resources.html

Structural domains of HIV-1 integrase

Comparison of HIV-1 integrase complexes

Adapted from Michel et al., EMBO 2009

High flexibility allows to accommodate different partners and functions No high resolution structure of full-length HIV integrase

=> Stabilization of integrase with partners/ligands for structural and functional studies

Full length Integrase wt : expression and solubilization

	37°		2!	5°	18°	
	ET	EB	ET	EB	ET	EB
LB	+	-	+	+	+	+
LB/sucrose	+	-	+	+		

	-	Glycerol 10%	Chaps 10mM	Triton 0.1%	Sucrose 20%
50mM NaCl	+/-	+/-	++	+/-	+/-
1M NaCi	+	++	+++	+++	++

Dimers (80 kd)

Strategy

- Partial non-structuration of the protein (disordered regions)
- High inter domain mobility

- Proteins domains, mutants, solubility fusions
- Stabilization by the interaction with partner proteins, ligands, DNA.

HIV Integrase structural and functional studies

Cloning, expression and solubility tests (E. Coli)

Protein	Fragment	Tag N _{term}	Protease site	Antibiotic	Expression	S_HS	S_LS	Notes
		No	No	Chlo	++	++		
		No		Amp	++	+++		
		6xHis	1	Amp	+++	+++	1	
	1	6xHis	1	Zeocin	+++	+++		
	[GST	Thrombin	Amp	+	+++	Nu -	
I I	[MBP		Amp	+	+++]	
	[6xHis-Nus	1	Amp	+	+++	1	
	1-530	Flag		Amp	Nd		1	
	1	No		Amp	Nd			
	1	6xHis	Tev	Amp	+++	++	++	
	1	GST	1	Amp	+	++	++	
	1	No		Amp	Nd			
	1	6xHis	Dentana 20	Amp	+++	++	++	
	1	GST	Protease 5C	Amp	+	++	++	
	1	6xHis	1	Spec	+++	++	++	Bicistronic (IN)
	No	No	Chlo					
1 55 05		6xHis	Protease 3C	Amp	+++	++	++	
LEDGF	347-429	GST		Amp	+++	+++	+++	
		MBP		Amp	+++	+++	++	
		6xHis	1	Spec			1	Bicistronic (IN)
		No	No	Chlo	Nd			
	1	6xHis		Amp	Nd	i —	i –	
	1	GST	Tev	Amp	Nd			
	347-442	6xHis-MBP	1	Amp	Nd			
	1	6xHis		Amp	Nd			
	1	GST	Protease 3C	Amp	Nd	i – –	i –	
	1	6xHis-MBP	1	Amp	Nd	i – –	i –	
		No	No	Chlo	Nd			
		6xHis		Amp	Nd			
		GST	Tev	Amp	Nd			
	347-471	6xHis-MBP	1	Amp	Nd			
		6xHis		Amp	Nd			
		GST	Protease 3C	Amp	Nd			
		6xHis-MBP	1	Amp	Nd			

LEDGF 347-429	VBP1 1-197	Transportin 1-923
HIS GST MBP	HIS GST MBP	GST
1234 1234 12 34		1234

Protein	Fragment	Tag N _{term}	Protease site	Antibiotic	Expression	Solubility	Notes
		No	No	Chlo	+	+	Only in co-expression
		No		Amp	+	+	
	[6xHis		Amp	++++	+++	pET15b
	[6xHis		Amp	+	++	
	[6xHis		Zeocin	++	++	
	[6xHis	Thrombin	Kana	++	++	
	[GST		Amp	++	+++	
	[MBP		Amp	+++	+++	Affinity Pb
ntegrase	1-288	6xHis-Nus		Amp	++	+++	
		Flag		Amp	Nd		
		No		Amp	Nd		
	[6xHis	Tev	Amp	Nd		
	[GST		Amp	-		Only GST exp
ŀ	[No		Amp	Nd		
	[6xHis	Drotoseo 3C	Amp	++	+++	
	[GST	FIOLEUSE SC	Amp	+++	+++	
1	ſ	6xHis		Chlo	+	+	Bicistronic (LEDGF)

Protein	Fragment	Tag N _{term}	Protease site	Antibiotic	Expression	Solub HS	ility LS	Notes
		6xHis			++	+++		
		GST	P3C		+++	+++		
VBP1		MBP	FJC		+++	+++		
		6xHis-MBP		Amp	+++	+++		
	1-197	6xHis			+++	+++		
		GST	Tev		+++	+++		
		6xHis-MBP			+++	+++		
		6xHis	P3C	spec	Nd	Nd	Nd	Bi-cistronic
		0		Chlo	Nd	Nd	Nu .	
		6xHis	Tev	A	-	-		
		GST			+++	+++		
		6xHis-MBP			+++	+++		
SNF5	1-385	6xHis			-	-		
		GST	P3C		+++	+++		
		6xHis-MBP			+++	+++		
		0		Chlo	Nd	Nd		
Transportin	1-923	GST	Thrombin	Amp	+++	++	++	pGEX

	37°		25°		18°	
	ET	EB	ET	EB	ET	EB
LB	+	-	+	+	+	+
LB/sucrose	+	-	+	+		

	-	Glycerol 10%	Chaps 10mM	Triton 0.1%	Sucrose 20%
50mM NaCl	+/-	+/-	++	+/-	+/-
1M NaCi	+	++	+++	+++	++

Soluble Extract:

2 4 150 mM NaCl

400 mM NaCl

BL21 pRARE

HIV-1 IN / LEDGF complex

HIV-1 IN interact with LEDGF

IN/LEDGF : complex formation and purification: E. Coli

IN/LEDGF : characterization by High Mass MALDI-TOFF

The cross-linking reactions were realised using a solution containing different cross-linkers specific for amino and sulfhydryl groups. The cross linking reactions were performed using a reagent composed of iodoacetec acid N-hydoxysuccinimide ester, Octaneodic acid di-N-hydroxysuccinimide ester and ethylene glycol bis-succinimidylsuccinate. (K200 MALDI MS analysis Kit, CovalX AG, Zürich, Switzerland).

IN/LEDGF : Functional characterization

DNA: 21 or 40-mer duplex that mimic the HIV-1 U5 viral DNA end

5'-GACTACGGTTCAAGTCAGCGTGTGGAAAATCTCTAGCAGT-3' 3'-CTGATGCCAAGTTCAGTCGCACACCTTTTAGAGATCGTCA-5'

LEGDF stimulates the 3' processing activity of IN with a 40-mer DNA. In the presence of LEGDF, the strand transfer efficiency is strongly enhanced for both the 21- and the 40-mer DNA.

IN/LEDGF : Functional characterization

The global integration efficiency is higher for the IN/LEDGF complex than for isolated IN molecules. Specific cloning and quantification of the circular FSI products attested that the IN/LEDGF complex catalyzes more concerted integration events than isolated IN molecules. The integration reaction catalyzed by the IN/LEDGF complex is closer to the expected physiological reaction than IN alone (5bp staggered cuts of the target DNA).

IN/LEDGF EM Structure: Domain organization

IN-LEDGF complex contains 4 IN molecules (A1, A2, B1 and B2) organized in two IN dimers Each IN monomer within the IN dimer has a different conformation \rightarrow the IN dimer is asymmetric Each IN molecule has a distinct function within the dimer.

IN/LEDGF/DNA EM structure

15 Å

3' Processing

Integration

HIV-1 IN / LEDGF / INI1 complex

IN interact with INI1/SNF5

SNF5/Ini1, a subunit of the SWI/SNF chromatin remodeling complex, is the first cofactor identified to interact with IN.

SNF5/Ini1 is one of the core subunits of the ATP-dependent chromatin remodeling complex SWI/SNF that regulates expression of numerous eukaryotic genes by altering DNA/histone interactions

It has been postulated that SNF5/Ini1 could target PICs to regions of the genome that are enriched for the SWI/SNF complex

INI1/SNF5: bioinformatic analysis

INI1: Cloning, expression and solubility tests (E. Coli)

	NaCl				
pH7,5	150mM	500mM	1M	2M	2,5M
0	-	-	-	-	-
CHAPS 7mM	-	-	-	-	-
CHAPS 10mM	-	-	-	-	+
CHAPS 20mM		-	-	(+)	++
Z[3-12] 4mM		+++			

IN/LEDGF/INI1 : complex formation and purification

Protein complexes analysis : High Mass MALDI-ToF

IN/LEDGF and IN/LEDGF/INI1: Functional characterization

IN/LEDGF and IN/LEDGF/INI1: Functional characterization

The 3' Processing assay by fluorescence anisotropy

INI1 inhibits the *3' processing* activity of IN/LEDGF

IN/LEDGF and IN/LEDGF/INI1: Functional characterization

In the presence of INI1, integration occurs with reduced kinetics compared to IN alone or to the IN/LEDGF complex with strongly reduced by-products formation

IN/LEDGF/INI1/DNA: Cryo-EM structure

Function of INI1 in HIV-1 infection

Benoit Maillot, Nicolas Lévy, Sylvia Eiler, Corinne Crucifix, et al., (2013), Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex, PlosOne, In Press

Michel, F., Crucifix, C., Granger, F., et al., (2009). Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J., 28, 980-991

Other PIC complexes..... In progress

IN nuclear import/export: IN interacts with TNPO3, CA, VBP1

Preliminary CryoEM data on IN/TNPO3/VBP1

Integration: IN interacts with the nucleosome

IN/LEDGF/DNA complex Nucleosome

Preliminary Negative stained EM

Structure and function of HIV Integrase domains

Histone H4K20Me1 interacts with HIV-1 IN C-terminal domain

H4K20Me1 interacts with HIV-1 IN

Histone peptide array 1.20R1The28 1.38H3me25 1.30R19me23 30R1Tme25 1-30×163¢ B-Α-1230 Unmot 123642286 BH9me2at20me3 melak20mel -setteme2520me1 at 22 act back 20h anthackhoatha 30R19me2ak20ac 30H6ark1mels 20H back Ome 20H16ack2Ome 20H1back2Omes 1.20H12aH168C 30K163CR19me 20H163eH203e 20K162eR19m 30K16ach17th 11-20K2Ame23 1-30KAme25 20K2Ome 30×20ac

Evidence that there is a specific and functional interaction between IN-CTD and the mono-methylated N-terminal tail of H4K20

Structural basis of the interaction between IN-CTD and H4K20Mel

Cloning of IN-CTD fragments

GST-CTD (221-288) HIV-1 Integrase purification

Protein was solubilized and purified in 25mM HEPES pH 8, 2mM $MgCl_2$, 2mM β ME, 150mM NaCl, 100mM Arginine

Size-Exclusion Chromatography

Pooled fractions were purified using Superdex S200 in 25mM HEPES pH 8, 2mM MgCl₂, 2mM β ME, 150mM NaCl.
Microscale thermophoresis for Kd measurement

(A) MST is measured in a capillary with a total volume of 4 mL. The fluorescence within the capillary is excited and measured through the same optical element. An IR-Laser is used to locally heat the sample volume that is observed by fluorescence. T-Jump and thermophoresis are directly observed as a change in fluorescence at different time scales.

(B) A typical MST signal for a given capillary. Initially, the molecules are homogeneously distributed and a constant "initial fluorescence" is measured. As soon as the IR-Laser is turned on, a fast T-Jump is observed, followed by thermophoretic molecule motion. The fluorescence decrease is measured for about 30 s. When the IR-Laser is turned off, an inverse T-Jump is observed, followed by the "backdiffusion" of molecules, which is purely driven by mass diffusion, allowing to deduce information on the molecule size.

Microscale Thermophoresis confirm a specific interaction between H4K20Me1 and GST-CTD HIV-1 Integrase

MST experiments were carried out with Fluo-KGG-RHRK(me_x)VLR

Cloning of IN-CTD fragments

NMR: HIS-P3C-IN 221-288

Protein was solubilized and purified in 25mM HEPES pH 7, 2mM βME, 1M NaCl

Pooled fractions were purified using Superdex S75 in 25mM HEPES pH 7,2mM β ME, 1M NaCl

HIS-P3C-IN 221-288: HSQC spectra

HIS-P3C-IN 221-288 HSQC spectra

HIS-P3C-IN 221-288:

M G S S H H H H H H G T G S Y I T S L Y K K A G F L E V L F Q G P M ²²¹Q N F R V Y Y R D S R D P V W K G P A K L L W K G E G A V V I Q D N S D I K V V P R R K A K I I R D₂₇₀ Y G K Q M A G D D C V A S R Q D E D₂₈₈

Cloning of IN-CTD fragments

HIS-P3C-IN 220-288, 270

Culture in N15 labeled minimal medium. Induced with 0.5mM IPTG for 4 hours

HIS-TRAP 25mM HEPES pH7, 2mM bME, 1M NaCl as lysis buffer, and 25mM HEPES pH7, 2mM bME, 1M NaCl, 500mM Imidazole

HIS 220-288 – 8.98kD

Pool fractions and run GF using S75 16/60 into 25mM HEPES pH7, 2mM bME, 1M NaCl

M G H H H H H H ²²⁰ I QNFRVYYRDSRDPVWKGPAKLLWKGEGAVVIQDNSDIKVV PRRKAKIIRD₂₇₀YGKQMAGDDCVASRQDED₂₈₈

HIS-P3C-IN 220-270: HSQC spectra, pH 7 and 8, +/- peptide

220-270 + 2mM Peptide, pH 7

220-270 + 2mM peptide, pH 8

There is a specific interaction between HIV CTD integrase and the monomethylated H4K20 peptide, and these interactions are pH dependent

Purification of double labelled (¹⁵N, ¹³C) HIS-IN-CTD 220-270

HIS-Trap FF crude

S75 16/60

1E3

Residue Assignment of HIS-IN-CTD-220-270

Structure in progress

NMR structures of IN-CTD 220-270

X-ray Structure of IN-CTD 220-270 at pH 7

X-ray Structure of IN-CTD 220-270 at pH 7

Resolution -1.5Å Space Group $-P6_3$ R-work -0.1997R-free -0.2284

2Fobs-Fcalc at 2.3 σ

X-ray Structure of IN-CTD 220-270 at pH 7

White -hydrophobic

IN-CTD 220-270 / peptide / DNA

Data at 4Å in the presence of DNA and peptide

NMR, X-ray, CD data combination

Peptide Binding, multimerization, pH effects

- Deciphering of residues affected by peptide binding and participating in the peptide recognition site
- Presence of 3 multimerization interfaces

- Structural changes induced by pH

Integration of functional and high resolution NMR and Crystallographic data with cryo-EM data \rightarrow need for better cryo-EM structures

Characterized complexes

Complexes suitable for low resolution EM studies but not for high resolution and not for crystallization : too many flexible / unstructured parts

Towards high resolution structure

Increase solubility, stability and homogeneity

- Produce stable complexes in cell (Production without solubilizing agents (small detergents, high salt))
- Effect of PTMs on stability (Setup efficient production in mammalian cells)
- Others partners (full length, domains, ligands, nanobodies, ...)
- Complex reconstitution procedures

Improve crystallization setups

- Setup analysis procedures to decipher the best physico-chemical conditions (DNA stoechiometry, pH, ionic force...) for the stabilization of non-covalent complexes in homogeneous conformation (thermofluor, DLS, ITC)
- Fast screening of crystals (in crystallization drop screening)

Methods development

<u>Produce stable complexes:</u> Production of unstable proteins through the formation of stable core complexes

Levy N., Eiler S., et al. Nat Comm (2016); Eiler S., Levy N. et al, Methods Mol Biol (2017), in press.

<u>Produce stable complexes in cell:</u> *In situ* protein complexes production in prokaryotic and eukaryotic cells

Decipher the best physico-chemical conditions: setup a sparse matrix approach for proteins/complexes stability and solubility optimization

Other partners: Disordered protein stabilization by nanobodies (Alain Roussel)

Camelida Antibod

Biobrick collection for protein expression in E. Coli, Insect and mammalian cells

Purification	H6P	6xHis - P3C cleavage site			
tags	H10P	10xHis - P3C cleavage site			
	H10FP	10xHis - Flag- P3C cleavage site			
	FH10P	Flag - 10xHis - P3C cleavage site			
	RP	Strep - P3C cleavage site			
	RRP	Strep - Strep - P3C cleavage site			
	RRFP	Strep - Strep - Flag - P3C cleavage site			
	FRRP	Flag - Strep - Strep - P3C cleavage site			
TEV cleavage	TT1	Twin TEV cleavage site (TCS) 1 : TCS A – TCS B			
sites	TT2	Twin TEV cleavage site (TCS) 2 : TCS C – TCS D			
	ТТЗ	Twin TEV cleavage site (TCS) 3 : TCS E – TCS F			
	TT4	Twin TEV cleavage site (TCS) 4 : TCS G – TCS H			
Linker STOP	STOP	STOP codon			
Proteins	TEV	Tobacco Etch Virus protease			
	LEDGF Human Lens epithelial derived growth factor				
	IN	HIV-1 Integrase			
	IN*	Degenerated HIV-1 Integrase			
	TRNSR2	Human Transportin			
	TT8-eYFP	Twin TEV cleavage site 8 – enhanced Yellow Fluorescent Protein			

IN/LEDGF in mammalian cells (vaccinia virus)

• Vaccinia virus: poxvirus family

- dsDNA virus (\approx 200 kb) encoding its own transcription and replication machinery
- viral multiplication in the cell cytoplasm: no RNA splicing
- viral infection diverts the cellular machinery in its favour
- at least 25 kb of foreign DNA
- MVA: Modified Vaccinia virus Ankara
 - non replicative in human cells
 - safe for people with immunodeficiency
 - manipulation is authorized under BSL1 containment
- Mammalian cells: BHK21 (baby hamster kidney cells)
 - authentic post-translational modifications
 - proper folding
 - protein function and structure analysis
- Encode T7 RNA polymerase, IPTG inducible

Before recombination: GFP(+), mCherry(+), NeoR(+), GYR-PKR(+) (Coumermycin Sensible), GPT(-) (Mycophenolic acid sensible)

After recombination: GFP(+), mCherry(-), NeoR(-), GYR-PKR(-) (Coumermycin Resistant), GPT(+) (Mycophenolic acid resistant)

Recombinant MVA selection

Recombinant virus genome

<u>Negative selection</u>: (monitored by mCherry loss) + coumermycin

- => Gyrase dimerisation => active PKR => eif2 α phosphorylation
- => translation inhibition => cell death

Positive selection: + mycophenolic acid

=> GPT integration selection

MVA Infection methods

Large scale production of Integrase/LEDGF complex in mammalian cells

Comparison of HIV-1 IN produced in E. Coli, Insect and mammalian cells

IN/LEDGF : complex formation and purification in Insect cells

Expression vector: Baculovirus

IN/LEDGF complex production in mammalian cells: mono expression

Comparison of HIV-1 IN produced in E. coli, insect and mammalian cells

Solubility analysis

INTEGRASE	1M NaCl 7mM CHAPS	1M NaCl Ø CHAPS	0.5M NaCl Ø CHAPS
Ecoli	+	-	-
Insect cells	+	-	-
Mammalian cells	+	+	+

Solubility increase for IN produced in mammalian cells

3' processing IN activity by fluorescence anisotropy measurements

5'-GACTACGGTTCAAGTCAGCGTGTGGAAAATCTCTAGCAGT-3' [6FAM] 3'-CTGATGCCAAGTTCAGTCGCACACCTTTTAGAGATCCTCA-5'

Increase of the 3' processing activity for IN produced in mammalian cells
Comparison of HIV-1 IN produced in E. coli, insect and mammalian cells

Band Excision Reduction (DTT) Alkylation (iodoacetamide) Digestion (Trypsin, AspN)

LTQ XL ETD (Thermo Fisher Scientific) nanoLC-nanoESI-CID/MS-MS nanoLC-nanoESI-ETD/MS-MS

Phosphorylation S24, Acetylation K46, K173, K211, K273

THP1 cells infection with IN wild type and IN mutants virus

S24A, S24E, K46R, K173R, K211R, K273R

Structural analysis of HIV-1 IN K173 acetylation

Stabilization of the HIV-1 IN dimer

Destabilization of the HIV-1 IN dimer

K173 acetylation weaken the IN - IN interaction in the dimeric interface resulting in increased flexibility and structural adaptability

3' processing assay adapted to 96 well plates, screening of a Shionogi sub library

IN/LEDGF Protein – Protein interaction inhibitors

HIV Integrase

Crystallization of IN CCD for Drug Design

24-25°C No diffraction !

HIV Integrase CCD – ligand structure

Le Rouzic et al., (2013), Retrovirology, 10, 144

IN – LEDGF interaction and IN allosteric inhibitors

Le Rouzic et al., (2013), Retrovirology, 10, 144

Le Rouzic et al., (2013), Retrovirology, 10, 144

Acknowledgments

HIV-1 IN Drug design Tomokazu Yoshinaga, Shionogi, Osaka Japan Richard benarous, Mutabilis, Paris Yves Mely, University of Strasbourg Molecular mechanisms of Viral DNA integration Stéphane Emiliani, Cochin institute, Paris Marc Lavigne, Pasteur Institute, Paris Olivier Delelis, ENS, Cachan Vincent Parissi, University of Bordeaux 2 Patrice Gouet, IBCP, Lyon IN Co-evolution Matteo Negroni, IBMC, Strasbourg IN Restriction factors (APOBEC 3G) Eric Ennifar, IBMC, Strasbourg Viral assembly and budding Jean Christophe Paillart, IBMC, Strasbourg Roland Marquet, IBMC, Strasbourg **Methods development** Yves Mely, University of Strasbourg Olivier Haeberlé, MIPS, University of Haute-Alsace Mass spectrometry Alexis Nazabal, CovalX, Zurich Sarah Cianferani, University of Strasbourg CryoEM Patrick Schultz, IGBMC NMR Bruno Kieffer, IGBMC Serge Bouaziz, Université Paris Descartes Synchrotron Vincent Olieric, SLS, Villigen

Robert Drillien Sylvia Eiler Benoit Maillot Nicolas Levy Julien Batisse Eduardo Bruch Sema Ejder *Karine Pradeau Oyindamola Oladosu* Valérie Lamour Arnaud Vanden Broeck Christophe Lotz

IGBMC common services and platforms

instruct Integrating Biology

Thank you I