Marc-André Delsuc

- Aujourd'hui à l'IGBMC de Strasbourg (8 ans)
 - après Gif-sur-Yvette (10 ans) et Montpellier (15 ans)
 - chimie-orga peptides protéines IDP
- Intérets:
 - IDP PolyProlines Récepteur Androgène
- Méthodes
 - RMN méthodologie - processing
 - FT-MS *depuis peu* 2D FT-ICR - processing - top-down
 - processing / analyse depuis toujours
 Analyse de Fourier
 Compressed Sensing
 Analyse statistique

Inserm

JNIVERSITÉ DE STRASBOURG

NMR Principles from observation to structural information

Marc-André Delsuc Renafobis - 2017

• Spectroscopy of the magnetic properties of the nuclei of atoms

▶ ¹⁹F

▶ ³¹P

. . .

spin $\frac{1}{2}$

spin $\frac{1}{2}$

- Spectroscopy of the magnetic properties of the nuclei of atoms
 - Some atom nucleus have a spin≠0
 - spin $\frac{1}{2}$ = the proton ▶ ¹H
 - spin 1 low abund. ▶ ²H
 - \bullet ¹³C spin ¹/₂ low abund.
 - \blacktriangleright ¹⁵N spin $\frac{1}{2}$ low abund.
- What is the spin ???
 - appears as the solution of the Dirac equation
 - Schrödinger + Relativity
 - an intrinsic property of particules (and black holes)
 - as the mass or the charge
 - carries a momentum

μ

magnetic momentum - angular momentum

$$\left(\beta mc^2 + \sum_{k=1}^3 \alpha_k p_k c\right) \psi(\mathbf{x}, t) = i\hbar \frac{\partial \psi(\mathbf{x}, t)}{\partial t}$$

the most interesting

to the biologist

• Spectroscopy of the magnetic properties of the nuclei of atoms

How Did The Proton Get Its Spin?

Mon, 04/03/2017 - 11:01am Comments by Department of Energy, Office of Science

Γ μ μ

In the 1980s, scientists discovered that a proton's three valance quarks (red, green, blue) account for only a fraction of the proton's overall spin. More recent measurements have revealed that gluons (yellow corkscrews) contribute as much as or possibly more than the quarks. Photo courtesy of Brookhaven National Laboratory

https://www.rdmag.com/news/2017/04/how-did-proton-get-its-spin

- Spectroscopy of the magnetic properties of the nuclei of atoms
 - In presence of a strong magnetic field Bo, a spin n presents 2n+1 different energy states, so a spin $\frac{1}{2} \Rightarrow 2$ states
 - Energy difference ΔE
 - determines the transition frequency
 - is proportional to Bo

• Spectroscopy of the magnetic properties of the nuclei of atoms

$$E = \hbar \nu \qquad \nu = \gamma |Bo|$$

- with γ depending on nucleus type
 - ¹H spin ½ 800 MHz
 ²H spin 1 low abund. 123 MHz
 ¹³C spin ½ low abund. 200 MHz
 ¹⁵N spin ½ low abund. 80 MHz

•

ū Rénafobis Oléron - 2017 •

NMR is a very low energy spectroscopy

<u>_ow-energy = low sensitivity</u>

From B Kieffer

- Spectroscopy of the magnetic properties of the nuclei of atoms
- The Quantum Resonance
 - phase coherence of the wave functions of the different particules
- observed / used in
 - LASERS
 - Quantum Computers
 - NMR
- characterized by
 - strange quantum effects
 - coherence transfers
 - decoherence limits life time
 - enhanced sensitivity

Spins in the Field...

- nuclear spins interact with
 - other nuclear spins
 - molecular orbitals
 - Iocal
 - nearby
 - electronic spins
 - ...
- act as perfect spies
 - no impact on molecular phenomenon
- and perfect reporters
 - will react to anything

Spins in the Field...

U

- In NMR EVERYTHING is rotating
 - in physical space
 - in quantum space
 - rotating in a rotating frame
 ⇒ Precession
- + ALL interactions are depending strongly on orientation
 - molecular axis vs Bo
 - spin-spin axis vs Bo
 ⇒ Tensor algebra

Phenomenon

- Chemical-Shift
 - resonance frequency
- Spin-Spin interaction
 - many effects J, D, RDC, NOE...
- Relaxation
 - *decoherence* of the quantum states
 - TWO main effects decoherence of resonance: loss of signal T₂ return to initial steady state: recovery: T₁

Measure by impulse response

The NMR observables...on a simple molecule

• Ethanol ¹H spectrum

HO-CH₂-CH₃

• Rénafobis Oléron - 2017 •

Chemical Shift

- CS depends strongly on molecular orientation vs Bo
- in liquids all values are averaged
 - only mean value is observed
 - in solids \Rightarrow wide lines
- isotropic CS is affected by shielding of the orbitals
 ⇒ chemical shift
- effect proportional to Bo
 ⇒ ratio (ppm) indep. of Bo

The NMR observables...on a simple molecule

HO-CH₂-CH₃

Averaging properties of NMR

• Rénafobis Oléron - 2017 •

Chemical Shift

1/2 (V + V)

 \overrightarrow{Bo}

- In liquids during the measure, the molecules *tumble* and take successively the CS value of each orientation
- if *tumbling* is fast (small molecules) a sharp line is observed at mean CS value
- if *tumbling* is not so fast, the lines widen
- if in **solid** all CS appear \Rightarrow wide lines

effect of molecular size

GB1 (~6 kDa)

LBD RXR Dimer (~50 kDa)

• Rénafobis Oléron - 2017 •

Spin-Spin interactions

Dipolar coupling D

- Through space
- depends on distance
 - and of course orientation
- averaged to zero in isotropic liquids
- relaxation effect
- Scalar coupling J

- isotropic part of D
- mediated by molecular orbitals
- depends on molecular topology
 - and also on diedral angles

• Rénafobis Oléron - 2017 •

NMR Spectra of Scotch Whisky

Will Kew, Nicholle G. A. Bell, Ian Goodall, Dušan Uhrín (2017) *Magn Reson Chem* DOI: 10.1002/mrc.4621

NMR Spectra of Scotch Whisky

Will Kew, Nicholle G. A. Bell, Ian Goodall, Dušan Uhrín (2017) *Magn Reson Chem* DOI: 10.1002/mrc.4621

¹H NMR spectrum of a folded protein

¹H NMR spectrum of a folded protein

¹H NMR spectrum of a folded protein

 using spin-spin interaction to transfer coherence from one spin to another

2D experiment - NOESY

Each correlation corresponds to a spatial proximity.

Here amide protons proximity (for instance i-i+3 and i-i+4 in α -helices)

Heteronuclear interactions

- HSQC
 - Heteronuclear Single Quantum Corr.
 - 1 bound ¹³C-¹H or ¹⁵N-¹H
- Requires isotopic labelling (*usually*)
 - *E.coli* in minimum media
 - (¹⁵N cheaper than ¹³C)

Study of large molecules requires ¹⁵N-¹³C labeling

ron - 2017 •

Isotopic labeling

Partial view => a tool to address the complexity of protein NMR spectra

CS is sensitive to protein conformation

R. Kitahara, C. Royer, H. Yamada, M. Boyer, J-L. Saldana, K. Akasaka, C. Roumestand Pressure-jump fluorescence and 15N/1H 2-D NMR studies of the unfolding of the beta-barrel protein, P13MTCP1. J Mol Biol, 320, 3, (2002), pp 609-628

complete protein denaturation

[•] Rénafobis Oléron - 2017 •

Specific methods for IDP

• Rénafobis Oléron - 2017 •

Bio-drug control quality

- 2017 •
CS of backbone provide structure information

CS interpretation as ϕ - ψ angles

Talos+: http//:spin.niddk.nih.gov/NMRPipe

📕 Phi :	-109	Psi:	131	D:	8.67	F3	N4	¥5	4417
📕 Phi :	-131	Psi:	126	D:	9.31	N107	E108	K109	4340
📕 Phi :	-130	Psi:	154	D:	11.25	C35	E36	137	5792
📕 Phi :	-118	Psi:	145	D:	11.36	V164	K165	E166	ospA
📕 Phi:	-94	Psi:	124	D:	11.80	M71	R72	173	vegf
📕 Phi:	-114	Psi:	133	D:	11.94	175	Q76	S77	hav
📕 Phi :	-116	Psi:	126	D:	13.09	T102	E103	F104	apo_1fabp
📕 Phi :	-120	Psi:	123	D:	13.10	L117	E118	M119	5579
📕 Phi :	-118	Psi:	135	D:	13.25	E58	159	I60	gyraseB
📕 Phi :	-105	Psi:	126	D:	13.39	T55	156	¥57	4267
🗆 Phi:	-116	Psi:	132	D:	11.72				Average

🗙 TALOS valpha.tab Residues 1 to 114									
M1	Q2	Q3	V4	R5	QG	S7	P8	Q9	S10
L11	T12	V13	W14	E15	G16	E17	T18	A19	120
121	N22	c23	S24	Y25	E26	N27	S28	A29	F30
D31	Y32	F33	P34	W35	Y36	Q37	Q38	F39	P40
G41	E42	G43	P44	A45	L46	L47	148	S49	150
L51	S52	V53	S54	N55	K56	K57	155	D59	G60
R61	F62	T63	164	F65	F66	N67	K68	R69	E70
K71	K72	L73	874	L75	H76	177	A78	D79	S80
Q81	P82	G83	D84	S85	A86	T87	Y88	F89	c90
A91	A92	S93	A94	S95	F96	G97	D98	N99	S10
K101	L102	1103	W104	G105	L106	G107	T108	S109	L110
V111	V112	N113	P114						

🗙 TALOS Sec	condary Shift Distributions	- 🗆 ×
HN(i-1)	<u>1 0 1 000</u>	0.420
N(i-1)		2.534
CO(i-1)		-2.000
CA(i-1)		-1.200
CB(i-1)		3.500
HA(i-1)		0.143
HN(i)	I A A A I A A I A A I A A I A A A I A A A A	0.310
N(i)		3.358
CO(i)		
CA(i)		0.450
CB(i)		3.113
HA(i)		0.670
HN(i+1)		0.730
N(i+1)		3.059
CO(i+1)		
CA(i+1)		-0.200
CB(i+1)		_ 2.640
HA(i+1)	10 10 m m m	0.170

Full structure calculations: CS ROSETTA

Consistent blind protein structure generation from NMR chemical shift data

Yang Shen*, Oliver Lange[†], Frank Delaglio*, Paolo Rossi[‡], James M. Aramini[‡], Gaohua Liu[‡], Alexander Eletsky[§], Yibing Wu[§], Kiran K. Singarapu[§], Alexander Lemak¹, Alexandr Ignatchenko¹, Cheryl H. Arrowsmith¹, Thomas Szyperski[§], Gaetano T. Montelione[‡], David Baker^{†|}, and Ad Bax^{*|}

*Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; †Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; ‡Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ 08854; [§]Departments of Chemistry and Structural Biology and Northeast Structural Genomics Consortium, University at Buffalo, State University of New York, Buffalo, NY 14260; and [¶]Ontario Cancer Institute, Department of Medical Biophysics, and Northeast Structural Genomics Consortium. University of Toronto. ON: Canada M5G IL5

www.pnas.org/cgl/dol/10.1073/pnas.0800256105

PNAS | March 25, 2008 | vol. 105 | no. 12 | 4685-4690

Fig. 4. Results from blind CS-ROSETTA structure generation for four structural genomics targets (Table 2). The remaining five are in SI Fig. 12. (A–D) Superposition of lowest-energy CS-ROSETTA models (red) with experimental NMR structures (blue), with superposition optimized for ordered residues, as defined in the footnote to SI Table 5. (E–H) Plots of rescored (Eq. 1) ROSETTA all-atom energy versus C^a rmsd relative to the lowest-energy model (bold dot on vertical axis). (A and E) StR82. (B and F) RpT7. (C and G) VfR117. (D and H) NeT4.

Local structure propensity from chemical shifts analysis

Baker et al 2007 Nat. Struct. Mol. Biol. 14(8), 738

• Rénafobis Oléron - 2017 •

arge number of molecules

Molecules will be distributed between the different states available for the observed molecular system

Molecular coordinates

• NMR observables will result from an average over all these states

sensitive to all interactions

F. de Lamotte et al. / C. R. Acad. Sci. Paris, Chimie / Chemistry 4 (2001) 839-843

Figure 1. HSQC spectra of type 2 LTP. A. Unliganded. B. Liganded with 1.5 equiv of LPG. C. Liganded with 1.5 equiv of DPC.

Chemical shift averaging

Using chemical shifts to study molecular interactions

Application: modulation of binding affinity between RAR and vinexin by RAR phosphorylation

Lalevee et al. Vinexin , The FASEB Journal (2010) vol. 24 (11) pp. 4523-4534

• Rénafobis Oléron - 2017 •

Real-time solvent exchange kinetic experiment

The exchangeable protons

3D Structure Determination

The Journal of Biological Chemistry \otimes 2003 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 278, No. 16, Issue of April 18, pp. 14249-14256, 2003 Printed in U.S.A.

Refined Solution Structure of a Liganded Type 2 Wheat Nonspecific Lipid Transfer Protein*

Received for publication, November 15, 2002, and in revised form, January 10, 2003 Published, JBC Papers in Press, January 13, 2003, DOI 10.1074/jbc.M211683200

Jean-Luc Pons‡, Frédéric de Lamotte§, Marie-Françoise Gautier§, and Marc-André Delsuc‡1

jbC

from NOE measures, \Rightarrow local proximities

between hydrogens through space

obtained by MolMod

earch

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Structural Basis for the Co-activation of Protein Kinase B by T-cell Leukemia-1 (TCL1) Family Proto-oncoproteins*S

jbc

Daniel Auguin[‡], Philippe Barthe[‡], Catherine Royer[‡], Marc-Henri Stern[§], Masayuki Noguchi[¶], Stefan T. Arold[‡], and Christian Roumestand[‡]

Search

THE JOURNAL OF BIOLOGICAL CHEMISTRY © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Structural Basis for the Co-activation of Protein Kinase B by T-cell Leukemia-1 (TCL1) Family Proto-oncoproteins*^S

Daniel Auguin‡, Philippe Barthe‡, Catherine Royer‡, Marc-Henri Stern§, Masayuki Noguchi¶, Stefan T. Arold‡||, and Christian Roumestand‡||

Structural Basis for the Co-activation of Protein Kinase B by T-cell Leukemia-1 (TCL1) Family Proto-oncoproteins*S

THE JOURNAL OF BIOLOGICAL CHEMISTRY

Daniel Auguin[‡], Philippe Barthe[‡], Catherine Royer[‡], Marc-Henri Stern[§], Masayuki Noguchi[¶], Stefan T. Arold‡, and Christian Roumestand‡

FIG. 6. SAXS analysis of the PKB β -PH·p14^{TCL1} complex. A, experimental scattering data. Error bars are indicated by vertical lines. B, pair distribution function p(r) for the PKB β -PH·p14^{TCL1} complex. Open circles, experimental curve; solid line, calculated curve for a typical *ab initio* model. C, side and top views of the molecular envelope of the PKB β -PH·p14^{TCL1} complex obtained by averaging 10 individual *ab initio* models. Proposed position of PKB β -PH domains (circles) and the p14^{TCL1} dimer (trapeze) within the SAXS envelope are indicated in the side view.

Protein-Protein interaction

3D model of the Vin SH3.3 / RARy DBD complex using HADDOCK

Residual dipolar couplings (RDC)

- Principle: the sample is diluted in an anisotropic medium
- This introduces a very small biais in the molecular orientations
- That leads to dipolar couplings that depends on the orientation of the internuclei vectors of the molecules

Partially oriented molecule

Isotropic phase

Modeling RDC data

$$RDC = D_a \left\{ \left(3\cos^2\theta - 1 \right) + \frac{3}{2} R\sin^2\theta \cos 2\phi \right\}$$

At least 5 RDC values are needed to define the molecular frame

Application of RDC to RNA structure

Calculation of the structure of the theophylline-binding RNA aptamer using ¹³C–¹H residual dipolar couplings and restrained molecular dynamics.

by adding the angular dependance : (non local) to NOE constraints (local)

Paramagnetic Relaxation Enhancement

- The presence of an electronic spin in the vicinity of nuclear spins increases their relaxation rates
- If the electronic spin is characterized by an isotropic g tensor, the effect depends only on the distance between the nucleus and electronic spins

$$R_{2}^{PRE} = \frac{1}{15} \left(\frac{\mu_{0}}{4\pi} \right)^{2} \gamma_{I}^{2} g^{2} \mu_{B}^{2} S(S+1) \left(\frac{1}{r_{IS}^{6}} \right) \left\{ 4\tau_{c} + \frac{3\tau_{c}}{1 + (\omega_{I}\tau_{c})^{2}} \right\}$$
$$R_{1}^{PRE} = \frac{2}{5} \left(\frac{\mu_{0}}{4\pi} \right)^{2} \gamma_{I}^{2} g^{2} \mu_{B}^{2} S(S+1) \left(\frac{1}{r_{IS}^{6}} \right) \left\{ \frac{\tau_{c}}{1 + (\omega_{I}\tau_{c})^{2}} \right\}$$

Introducing spin label to protein surface

Battiste et Wagner Biochemistry V39, p5355 (2000)

114

-116

118

120

124

126

-128

-130

(mqq) N⁵¹

210

63/96

213 0 154

9

0 45

Application to multiple domain proteins

from Bernt Simon M Sattler EMBL Heidelberg, Angew. Chem., 2010, 122(11), 2011 - 2014

Applied to IDP (Tau)

Figure 7. PRE of Amide Protons in Spin-Labelled Tau

Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, et al. (2009) Structural Polymorphism of 441-Residue Tau at Single Residue Resolution. PLoS Biol 7(2): e1000034. doi:10.1371/journal.pbio.1000034 http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1000034

Lebars I.*, Vileno B., Bourbigot S., Turek P., Wolff P. & Kieffer B. (2014) "A fully enzymatic method for site-directed spin-labeling of long RNA", *Nucleic Acids Res.*, 42(15), e117,

PRE based amplification of low population states

 Due to the r⁻⁶ distance dependance of the PRE, small distances in low populated states may be revealed

Phenomenon

- Chemical-Shift \equiv position in the spectrum
- Spin-Spin coupling
 - "Dipolar" coupling depends on spin-spin geometry
 - "Scalar" coupling depends on electronic orbital
- Relaxation
 - decoherence of the quantum states
- NOE
 - relaxation due to spin-spin \Rightarrow information on atomic distances
- RDC: Reduced Dipolar Coupling
 - information on angular geometry
- PRE: Paramagnetic Relaxation Experiment
 - relaxation due to electronic spin-spin ⇒ information on molecular contacts

final remarks

- sensitivity aspects
- protein size aspects
- signal aspects
- more than structure

Recent advance in NMR instruments

The Signal/Noise ratio depends on the applied magnetic field

Sensiticity increase over my carrier

Protein quantity ~ Moore law /2 every 2 years /1000 in 20 years

Strategy related to size

• tiny proteins

M < 6 kD

- very easy to study
- peptides !
- small proteins

M < 12-15 kD

M < 40 kD

- easy -
- ¹⁵N labelling might be enough
- larger proteins
 - ▶ ¹⁵N and ¹³C required ²H to be considered
- very large proteins
 M > 50 kD
 - ²H labelling and ¹⁵N / ¹³C labelled specific incorporation
- beware of "hidden" oligomers

Glutathion-S-Transferase 2x50kD Insuline : 6x6kD

Distribution de taille

Overview of cell free isotopic labeling

Specific'amino'acids'labeling

Is NMR spectroscopy only limited to small molecules?

Courtesy of J Boisbouvier et al.
Solution NMR Spectroscopy Specific protonation of methyl groups

Uniformely [¹H, ¹³C, ¹⁵N]

Methyl groups

Gardner et al, J. Am. Chem. Soc. (1997)

Solution NMR of supramolecular complexes: providing new insights into function

Remco Sprangers, Algirdas Velyvis & Lewis E Kay

Nature Methods 2007

dynamic measurements

Déméné, H., Ducat, T., Barthe, P., Delsuc, M.-A., & Roumestand, C. (2002). Structure refinement of flexible proteins using dipolar couplings: application to the protein p8MTCP1. Journal of Biomolecular NMR, 22(1), 47–56.

Application: Real-time follow-up of a folding

Real-time multidimensional NMR follows RNA folding with second resolution

Mi-Kyung Lee^{a,1}, Maayan Gal^{b,1}, Lucio Frydman^{b,2}, and Gabriele Varani^{a,c,2}

PNAS 2010

• calcul en module

$$\|S(\nu)\| = \sqrt{S(\nu)S^*(\nu)}$$

• phénomène cohérent = calcul sensible à la phase

- calcul de la densité spectrale de puissance
- adapté aux signaux stationnaires
- mal adaptés aux FID

La transformée de Fourier - MA Delsuc

quelques remarques (2)

- Erreur sur to
 - => convolution du spectre pæ $^{i\nu t_o}$
 - rotation de la phase proportionnel à la fréquence
 - correction de phase

Mise en œuvre (2)

- artefacts
- forte de perte de signal dans certains cas
- modification du signal mesuré !

La transformée de Fourier - MA Delsuc

Working on sampling methods

- The use of FFT imposes a linear sampling
- Non Uniform Sampling (NUS) are currently being developed allowing considerable gain of time

P Schanda Progress NMR Spect. 2009

- Study of Intrinsically Disordered Proteins (IDP)
- Study of Molecular Recognition fundamental mechanisms
- Description of Protein and Nucleic Acid excited states
- Visualizing Large complexe's motions
- Monitoring protein's states within the cell

Protein Science (2000), 9:1137–1148. Cambridge University Press. Printed in the USA.

Characterization and molecular basis of the oligomeric structure of HIV-1 Nef protein

STEFAN AROLD,^{1,3} FRANÇOIS HOH,¹ STEPHANIE DOMERGUE,¹ CATHERINE BIRCK,² MARC-ANDRÉ DELSUC,¹ MAGALI JULLIEN,¹ AND CHRISTIAN DUMAS¹

¹Centre de Biochimie Structurale, UMR C5048 CNRS, U414 INSERM, Université Montpellier I, Avenue C. Flahault, 34060 Montpellier, France
²Groupe de Cristallographie Biologique, IPBS-CNRS, 31077 Toulouse, France

(RECEIVED November 3, 1999; FINAL REVISION March 6, 2000; ACCEPTED April 21, 2000)

Fig. 4. Analysis of the oligometric state based on NMR DOSY data: the methyl region of the DOSY spectrum of $Nef_{\Delta 1-56,\Delta 206}$ at 140 μ M is shown. Three columns have been extracted at 0.91, 1.01, and 1.20 ppm and are reported to the left. The corresponding diffusion coefficients, materialized by hatched axes, are 66, 84, and 77 mm²/s, respectively. The star indicates an impurity, with a much faster diffusion coefficient.