

Fitting procedures:	- manual fitting (e.g. O, Coot, Pymol, Chimera)
1) global search 2) refinement	- real space litting - reciprocal space fitting
At ~8-20 Å resolution:	
- fit complete structure	s, protein or RNA domains, factors; usually backbone is enough.
Rigid body or flexible f	itting (e.g. Situs, MDFF, Flex-EM, iMODfit,)
- use full maps or differ	rence maps
At ~3-5 Å resolution:	
- atomic model building	g: start with poly-Ala model, check register (position of Ca atom),
check secondary struct	ure elements (e.g. direction of a -helices), refine with crystallograph
programs (CNS, Buster	; Phenix, CCP4,), add side-chains if clearly visible,
use information from n	nulti-sequence alignments; check geometry with Ramachandran pl

Common problem: determination of the handedness

- V. Considerations important to improve cryo-EM reconstructions
- 1. Address heterogeneity
- 2. Perform focused refinement
- 3. Take into account preferential views
- 4. Make sure symmetry is correctly determined

Some tricks to improve the cryo-EM reconstruction and facilitate map interpretation:

1. Address heterogeneity:

reference-based, i.e. cross correlation with forward-projections of known structures
 multivariate statistical analysis (MSA): 3D classification / bootstrapping, 3D resampling
 maximum likelihood based class assignment

Determining structures of multiple conformational states in a single sample

distinguish: orientational classification and conformational classification

IGRMC

4. Make sure symmetry is correctly determined

VI. Point group symmetries (internal symmetry of isolated objects)

12

VII. Pushing resolution by structure sorting, detectors & movie processing

→ particle sorting, advanced image processing

How to sort out heterogeneity?

3 different approaches:

1) reference-based, i.e. cross correlation with forward-projections of known structures

2) multivariate statistical analysis (MSA): 2D classification or 3D classification

3) maximum likelihood based class assignment

IGRMC

Determining structures of multiple conformational states in a single sample 2) multivariate statistical analysis (MSA): 2D classification, 3D classification

distinguish: orientational classification and conformational classification

IGRMC

Determining structures of multiple conformational states in a single sample Possibilities to address heterogeneity:

1) reference-based, i.e. cross correlation with forward-projections of known structures

2) multivariate statistical analysis (MSA): 2D classification or 3D classification

3) maximum likelihood based class assignment

Conclusions:

- do not assume a single state in your sample / multi-subunit complex
- consider lower symmetry (viruses etc.) to see differences between subunits
- if to use local / focused classification/refinement: use slightly larger region
- also useful in sub-tomogram averaging and 3D classifications
- consider: any sub-ensembles will not be entirely homogeneous due to the statistical nature of the procedures (resampling and/or ML)

IGRMC