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We have collected your nice 2D images. But there are very noisy...

What would you do to improve
signal/noise ?

Make groups of similar
particles and average them !

= 2D classification



A single image

Average of several images with the same orientation
4 16 64 256 1024

The problem: there are several orientations so we need to separate into
several class averages



How to create homogeneous 2D class averages?

= Translation of images to center them

A. Patwardhan



Method used to center images

Average of all images

Rotational average

Cross-correlation
Shift of image 2

Cross-correlation between each f ' to match image 1
iImage and the rotational average

AN v o8

g «f Image 1 Image 2 CCF

Translation of each image to
center it !
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A. Patwardhan



» Rotation (requieres a reference). Again done using cross-
correlations.

A. Patwardhan



= Centered and rotated images with low signal to noise ratio
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» (Class averages with higher signal to noise.



Principle of Multivariate Statistical Analysis to obtain 2D class average

= Let's consider the simplest case: images with only 2 pixels

Density value 4,
of pixel 1
5 ° ®
4 ) ° ®
3 ® ° o ()
| . . . :-
1
1 2 3 4 5

Density value

of pixel 2
Adapted from B. Klaholz



Aim of the MSA:
adapt the coordinate system to the shape of the data cloud

» 1st axis: longest elongation of the data cloud, i.e. highest variance
= 2st (orthogonal) axis: corresponds to the next strongest variance

Density value 4,
of pixel 1

| :-

Density value
of pixel 2



If we now have images with 100x100 pixels. Instead of having two
axes, we will have 100x100 axes....

But we can still rotate the coordinate systems to make it correspond to
the largest elongations of the data cloud.

Only few axes = eigenvectors will correspond to the main directions of
variations. This new coordinate system will be used for an MSA
analysismmm) data reduction

Density value 4,
of pixel 1

»
»

Density value
of pixel 2



= Eigenimages will be calculated and will correspond:

» for the 1st one to the total sum
» for the others: to the higest variances of the dataset

Eigenimages

Density 4
value of
pixel 1

»
>

Density
value of
pixel 2



Clustering

minimization of the intraclass variance in a cluster (between the

members of the cluster)
maximization of the interclass variance between the centers of

mass of the clusters
Classes

Orlova, Saibil, Chem Rev. 2011



0.08

Hierarchical (agglomerative) ascendant classification

3 Class

0.06

0.04

averages

9 Class

0.02

averages

0.00

W 35 Class
averages
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— - From 2D to 3D .
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From... .

[ = Step 1: determine orientations }

@

= Step 2: combine these orientations to
obtain a 3D reconstruction

J

= Step 3: refine the structure




Step 1: How to determine orientations?

Characteristic views - projections

We need to assign to which view
which image corresponds.

We need to assign euler angles
to images !




Phi

Theta Psi

Euler angles

From Nicolas Boisset



Step 1: How to determine orientations?
1st method: with 2D class averages
Angular reconstitution

Projections

= Determination of the euler angles of the
projection: computationally, using the
common line theory

Sinograms

“two projections of the same object share a
common line”

= Done on 2D class averages

= Necessity to be centered




Sinogram Sinogram

90° 1804 270° 3609
Cross-correlation Cross-correlation
of sinograms - of sinograms

Orlova, Saibil, Chem Rev. 2011



Step 1: How to determine orientations?
2nd method: with data collection of tilt pairs
Random conical tilt

* From projection pairs (usually 0, 60 degree)

» Possible to assign relative angles between images

From Leschziner AE
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From Leschziner AE



= Can also be done with images at -45 and 45 degree
* Orthogonal random conical tilt

From Leschziner AE



Step 1: How to determine orientations?

3rd method: tomography




A electron beam B _'
= Advantages: % »
‘ WO A\
» Experimental i
determination
* No classification

= Disadvantages: 0°
* Dose issues

» Artefacts (we'll see
later why...)
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From2D...

[ = Step 1: determine orientations }

@

= Step 2: combine these orientations to
obtain a 3D reconstruction

J

= Step 3: refine the structure




Step 2: How to combine these orientations to obtain a 3D

B
7]
®\

§ g
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Em@”

By backprojection !

One image : not suffisant. But if we know views from 0 to 60 degrees each

Y4 of degree ?

reconstruction?

projection

[N

INEEn

Wil n

backprojection

1 proj. used




projection backprojection

240 proj. used

= Much better ! But still distorted. We should go to 90 degree to see no
distortion



= Do we encounter such a problem of missing angles?

Dbject I Preg 3 Proj./40 c=3.
5 Froj./20 deg. 13 Pzoj./13 deg. 2% Prcj./5> ceag.

= Yes in random conical tilt and tomography

A

electron beam

WOV
| y y




Solution: combined different reconstructions with different missing

|
The missing cone ———
: use new reference for alignment N
artlfaCt iterate until reference is stable \
\
t \
|
aligned to
Top views Front views subtomograms _’relerence subtomograms ————
(randomly oriented) (aligned)
tomogram
averaged subtomograms
# o T T (new reference)

T3¢ 1

?
A ) ?

Current Opinion in Structural Biology

From N. Boisset From J. Briggs



Caution: you can always get a 3D volume from your data

sl 4
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Caution: you can always get a 3D volume from your data




Great ! You got your 15t 3D reconstruction !!

How do you make sure it is correct ?




rm

[ = Step 1: determine orientations J

@

= Step 2: combine these orientations to
obtain a 3D reconstruction

J

= Step 3: refine the structure




Projections of the initial 3D reconstruction

» Project the initial 3D reconstruction towards all directions (of this
asymetric unit)
= Choose even distribution of projections.




Projection Matching, highest Cross-correlation criteria

= Compare each image to all the projections
= Allow translations and rotations of the image to find

the best CC.
= Assign the euler angles of the projection having the

highest CC to the experimental image.

——————-——-.~~
- —
- —~




Projection Matching, highest Cross-correlation criteria

= Compare each image to all the projections

= Allow translations and rotations of the image to
find the best CC.

= Assign the euler angles of the projection having
the highest CC to the experi tal image.




Reconstruction by back projection




Iterations

* Projections of the 3D reconstruction
* Projection matching with the highest cross-correlation criterion
= Back-projection




= The 3D reconstruction improves every iteration.

» |ts projections are of better quality.

= Angular assignment is more and more precise until
convergence.




Maximum likelihood methods applied to single-particle reconstruction

A | B High probability

Lower,probability

P(X:9.6)

»% || 1 o | ©
X, f\[ 1 } P& || &
probability distribution function for orientations

A

R,




Maximum likelihood methods applied to single-particle reconstruction

A _ B High probability
| T
:‘:1 Lower probability
& ® - . ° . .
< 5 || 13 | | ¢
= o[£ ?‘ B[] &) §
probability distribution function for orientations
A B ¢ =
A, :}“ R'\l,\'l ' [4\ '
LI K £
. - ‘.'-'wli
X, {‘“ RX, . ; ‘ . : . . 4”* FiiY
probability-weighted averaging From Scheres

=» Cleaner references, higher radius of convergence



Maximum-likelihood applied to our example

= For each image, a probability is given to
every orientation

= More robust as we have images with very
low signal to noise




How to deal with structural heterogeneity ?

» Most datasets are, to some extent, heterogeneous.
= For example, you can have a dataset with your complex in both active
and inactive states.




= Cryo-EM image analysis allows to classify these 3D
heterogeneities

» Generation of X initial reconstructions (can be obtained from
random subsets of images with assigned euler angles)

= « Competitive » projection matching.

= Can be done with the highest cross-correlation criterion or with
maximum likelihood.




= Allows to obtain several structures out of one dataset !
= As subsets are more homogeneous, they can reach higher resolution !




Methods to classify 3D heterogeneity

« Competitive projection matching » using the highest cross-
correlation criteria

« Competitive projection matching » using maximum likelihood

3D MSA
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4 random subsets; 1 iter ML
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22,176 particles 27,416 particles 25,651 particles 15,871 particles

N 4 \ ~ J
no ratcheting; no EF-G; 3 tRNAs ratcheting,
differences: overall rotations EF-G, 1 tRNA

(Results coincided with a supervised classification) Scheres et al (2007) Nat. Meth.



Simonetti et al, Nature 2008



Separation of time-resolved states
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Fischer et al, Nature 2010



473,827 particles

Look how great EM 20 cassicaton | R
image analysis can _ 438602particles O, Q)

3D dlassification l
e——

become !! 140,155 partiies
* Particle polishing
* Refine o l '

Unmasked classification

WD A clnselicatin wilh

m '|n-;' m) lar sampling

Nguyen et al, Nature, 2016



ongratulations ! You got your 15t refined EM map !




How to calculate the resolution?

b 4

(2)
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[ align & reconstruct ] align & reconstruct
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0.025 005 0.075 0.1 _ 0.125 0.15 0.175
Resolution (A1)

Dataset separation in two halves

|

One reconstruction from each half

l

Comparison in Fourier
space for each Fourier
shell

Several criteria:
0.5

0.143

3 sigma

2 bit

Harauz and van Heel (1986)
Rosenthal et al., 2003



Resolution is not the same everywhere, local resolution can be
calculated

Resolution
3D visualization Density map slice(s) ResMap-H2 slice(s)  (A)

a

7.0
6.5
- 6.0
5.5



