Some basic concepts of cryo-EM & 3D reconstruction

Correct terms are important (be precise and rigorous in science :-)

By cryo-EM, we obtain:

- a "3D reconstruction" (initial or refined)
- a "cryo-EM map" or "density map"

- a "structure"

NOT (at least formally):

- an "envelope" (would be SAXS or neg. stain. EM)
- a "volume", units would be $Å^3$ (e.g. volume of a pocket, volume x density = mol. mass)
- a "surface", units would be $Å^2$ (e.g. interaction surface between 2 proteins)
- a "model", would be a molecular model *fitted to* the map (crystallography/cryo-EM) or a model *compatible with* SAXS data or NMR restraints;

other "models": "homology model", "error model", "hypothetical model", "working model"

technically:

- back-projection
- angular reconstitution
- random conical tilt
- tilt series / tomogram

Some basic concepts of cryo electron microscopy

Correct terms are important:

A classification is based on a statistical analysis:

- multivariate statistical analysis (MSA) provides information on variance (variability) which serves to merge similar images into class averages (classes); is *independent* of a reference
- classes *are NOT*: the sum of images that correlate best with a reference (through a multi-reference alignment)

Some basic concepts of cryo electron microscopy

Basic aspects:

- "resolution" corresponds to "spatial frequency" in image processing (1/ Å)

- Nyquist frequency is = 2 x pixel size, e.g. 1 Å / pixel \rightarrow Nyquist = 2 Å

- interpolations during 2D image alignment and 3D reconstruction limit the possible resolution to about 2/3 of the Nyquist frequency, i.e. here ~ 3 Å
 ^(exception: super-reso)
 pixels in 3D: "voxel"
- any correlation calculation (e.g. alignment) is <u>biased</u> by the reference used
- resolution estimation, criteria used:
 - 0.5, arbitrary, historically from the virus field, tends to underestimate resolution
 - 0.143 (Henderson) and $\frac{1}{2}$ bit (van Heel)
 - 3 σ , not used anymore (over-estimation; useful for noise estimation)
 - features in the map: can we see dsRNA helices (~10-12 Å resolution),
 α-helices (~8 Å), β-sheets (~5 Å) or side chains (4-2.5 Å, depending on size)?

