

Integrative Structural Biology Summer School

21 June 2017 – Oléron, France

NMR spectroscopy: major advances and future developments

Catherine Bougault, IBS, Grenoble

catherine.bougault@ibs.fr

Biomolecular NMR : 35 years of methodological developments

NMR: principles of structure determination

NMR sample

NMR data acquisition

Resonance assignment

Structural ensemble

Structure calculation

Structural parameters

Biomolecular NMR : 35 years of methodological developments

NMR: developments and limits

NMR: A limited competitiveness for structures

NMR, some limitations

Resolution and spectral hindrance

- Acquisition time: few seconds
- limited spectral resolution
- No necessary isotope labeling
- Global characterization

- Acquisition time: few minutes
- Increase in the spectral resolution
- Necessary isotope labeling (¹⁵N)
- More detailed information

NMR, a limited competitiveness for structures: a lengthy process

NMR sample

NMR data acquisition

Resonance assignment

41.1 kDa $C_{1827}H_{2869}N_{489}O_{570}S_{12}$

Structural parameters

Structural ensemble

Structure calculation

slow overall rotation

pubs.acs.org/biochemistry

Jan 2013

The Quiet Renaissance of Protein Nuclear Magnetic Resonance

Paul J. Barrett,[†] Jiang Chen,[†] Min-Kyu Cho,[†] Ji-Hun Kim,[†] Zhenwei Lu,[†] Sijo Mathew,[†] Dungeng Peng,[†] Yuanli Song,[†] Wade D. Van Horn,^{†,§} Tiandi Zhuang,[‡] Frank D. Sönnichsen,[∥] and Charles R. Sanders^{*,†}

[†]Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, United States

[‡]Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States [§]Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States

^{II}Institute for Organic Chemistry, Christian-Albrechts University of Kiel, D-24118 Kiel, Germany

ABSTRACT: From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 1980s.

2005-2017

NMR: a tool for integrative structural biology

- ★ Study of intrinsically disordered proteins
- \star Study of mechanisms of molecular recognition
- ★ Study of proteins and nucleic acid excited states
- ★ Study of the dynamics of very large complexes

★ In-cell NMR

Technological innovations and developments

NMR: developments and limits

 Magnets
 500 MHz
 600 MHz
 800 MHz
 900 MHz
 950 MHz
 1.0-1.2 GHz

NMR, some limitations

Sensitivity or signal-to-noise ratio

$$E_{\beta} = \frac{1}{2} \gamma \hbar B_{0}$$
Boltzmann
$$\frac{N_{\alpha}}{N_{\beta}} = e^{\frac{E_{\beta} - E_{\alpha}}{k_{B}T}}$$

$$E_{\alpha} = -\frac{1}{2} \gamma \hbar B_{0}$$

$$\frac{N_{\alpha}}{N_{\beta}} \approx 1 + \frac{\gamma \hbar B_{0}}{kT}$$

$$\approx 1 + 9,66 \times 10^{-5}$$

Particular case of spin 1/2

 $@B_0 = 14.09T(600MHz)$

$$\vec{M} = \sum \vec{\mu} = \sum \gamma \hbar \vec{I}$$
$$\vec{M} = N \frac{\gamma \hbar B_0}{2kT} \gamma \hbar \frac{1}{2} \vec{z} = \frac{N (\gamma \hbar)^2 B_0}{4kT} \vec{z}$$

Magnets become more compact

- Compact size and small stray field improve siting flexibility
- Outstanding stability and high-resolution NMR performance

Data courtesy of Bruker

Proton frequency

NMR, overcoming some limitations

Sensitivity or signal-to-noise ratio

$$\vec{E} = \sum_{\alpha} \vec{E}_{\beta} = \frac{1}{2} \gamma \hbar B_{0}$$

$$\vec{M} = \sum_{\alpha} \vec{\mu} = \sum_{\alpha} \gamma \hbar \vec{I}$$

$$\vec{M} = N \frac{\gamma \hbar B_{0}}{2kT} \gamma \hbar \frac{1}{2} \vec{z} = \frac{N(\gamma \hbar)^{2} B_{0}}{4kT} \vec{z}$$

$$\vec{E}_{\alpha} = -\frac{1}{2} \gamma \hbar B_{0}$$

Spins 1/2

Alternatives to increase Boltzmann? Optical pumping (Xe) Parahydrogen DNP

Technological innovations: Dynamic Nuclear Polarization

263 GHz Gyrotron in Bruker-Billerica DNP Lab

263 GHz solid-state DNP

DNP-MAS spectrum of ¹³C, ¹⁵N-proline

C. Song, T. Swager et. al., JACS (2006)

DNP in the liquid state at room temperature

From H. Ardenkjær-Larsen et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10158–10163.

Photo-chemically induced DNP (Photo-CIDNP)

Kenichiro Tateishi et al, Room temperature hyperpolarization of nuclear spins in bulk, PNAS May 2014

Photo-chemically induced DNP (Photo-CIDNP)

Proton polarization leads to lines with asymmetric coupling. 30% polarization at room temperature in this case (x 250 000)

Kenichiro Tateishi et al, Room temperature hyperpolarization of nuclear spins in bulk, PNAS May 2014

NMR: developments and limits

Cryoprobes

500, 600 700,800 1000

The probe

 $M_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$

 $S/N \propto Q\eta M_O$

Q quality factor, η filling factor

Gain with a cryoprobe

Induced Signal Voltage to Noise Voltage

Q quality factor, η filling factor

Signal-to-noise depends on the magnetic field

Limitations of cryoprobes

Low-Conductivity Buffers for High-Sensitivity NMR Measurements

Alexander E. Kelly,[†] Horng D. Ou,[†] Richard Withers,[‡] and Volker Dötsch^{*,§}

¹H / ppm

JACS, 2002

Limitations of cryoprobes

Gain with a cryoprobe

Quantity of protein detected

Anal Chem. 2010 September 1; 82(17): 7227–7236. doi:10.1021/ac101003f.

Multiplexed NMR: An Automated CapNMR Dual-Sample Probe

James A. Norcross[†], Craig T. Milling[†], Dean L. Olson[†], Duanxiang Xu[†], Anthony Audrieth[†], Robert Albrecht[†], Ke Ruan[§], John Likos[§], Claude Jones[§], and Timothy L. Peck^{*,†}

Multiplexing Signal Router

Liquid vs solid-state probe

~ 400 μ l of soluble sample

 \sim 20 µl of hydrated insoluble sample

Solid-state NMR should allows to study large and insoluble proteins or biopolymers by NMR

Solid-state fast rotation MAS (111 kHz)

Protein-peptidoglycan spectrum 39 kHz MAS, 600 MHz deuterated protein + deuterated PG in H_2O -based buffer 3D in about 3 days exptl time.

Solid-state fast-rotation MAS

L. Emsley et al. B. Meier et al.

Barbet-Massin et al., J. Am. Chem. Soc. 2014, 136, 12489-12497

Figure 2. ¹⁵N-¹H correlation spectra recorded on a 1 GHz spectrometer under 60 kHz MAS for [U-H^{N,2}H, ¹³C, ¹⁵N]-labeled (a) microcrystalline SH3, (b) microcrystalline β 2m, and (c) sedimented nucleocapside of AP205, (d) M2 channel, and (e) OmpG.

Technological innovations

Coherence or magnetization transfer experiments

Doubly labeled sample: ${\rm ^{13}C,\ ^{15}N}$

Recombinant protein in *E. coli* ¹⁵NH₄Cl ¹³C-glucose

Recombinant DNA or RNA with labeled NTPs, Enzymatic synthesis

Coherence or dipolar transfer experiments in liquids

Dipolar transfer experiments in ssNMR

cross-polarization

slow overall rotation

Back to the liquid-state ... Exploitation of the relaxation properties

1. Transverse relaxation:

Exploitation between different relaxation mechanisms (CSA-DD)
=> TROSY

Data acquisition is full of dead times

Exploitation of the relaxation properties

2. Longitudinal relaxation:

 Accelerate the return to the thermodynamic equilibrium to speedup the acquisition process => SOFAST, BEST, BEST-TROSY

Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B. J Biomol NMR. 2013 Apr;55(4):311-21.

Alternative sampling methods

- The use of FFT implies a linear sampling
- Alternative methods (NUS) are now proposed

M. Mobli and J.C. Hoch Progress in Nuclear Magnetic Resonance Spectroscopy 83 (2014) 21–41

Alternative sampling methods

(1) space-encoded excitation

(2)

homo-

mixing

(3) gradient-assisted aquisition

Single-scan spectroscopy Frydman L, Scherf T, Lupulescu A. PNAS. 2002

Application: following real-time folding of an RNA aptamer

Real-time multidimensional NMR follows RNA folding with second resolution

Mi-Kyung Lee^{a,1}, Maayan Gal^{b,1}, Lucio Frydman^{b,2}, and Gabriele Varani^{a,c,2}

PNAS 2010

Assessing data on non-detectable states

Assessing data on non-detectable states

Sekhar and Kay, PNAS 2013, 12867-12874

Technological innovations

Sample volume changes matches probe design

1.7 mm cryoprobe
30 μL sample volume
Liquid-state NMR

111 kHz MAS probe 2 μL sample volume Solid-state NMR

$$M_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT} \quad S/N \propto Q\eta M_0$$

Standard methods: ¹³C,¹⁵N-labeling and 3D triple resonance spectroscopy

Is NMR limited to small molecules?

Figure courtesy of J. Boisbouvier

Can we investigate large functional machineries with NMR?

Me-labeling tool kits for NMR

Monitoring of a molecular machine in action

P. Macek et al. Sci Advances, 2017, e1601601

Monitoring of a molecular machine in action

P. Macek et al. Sci Advances, 2017, e1601601

Monitoring of a molecular machine in action

P. Macek et al. Sci Advances, 2017, e1601601

Cell free expression and combinatory isotopic labeling

Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment

Frank Löhr · Sina Reckel · Mikhail Karbyshev · Peter J. Connolly · Norzehan Abdul-Manan · Frank Bernhard · Jonathan M. Moore · Volker Dötsch

J Biomol NMR (2012)

Amino acid type	Samples		
	1	2	3
Leucine	¹³ C/ ¹⁵ N	1- ¹³ C	1- ¹³ C
Valine	1- ¹³ C	¹³ C/ ¹⁵ N	
Isoleucine			¹³ C/ ¹⁵ N
Methionine	¹⁵ N		
Lysine		¹⁵ N	
Phenylalanine			¹⁵ N
Arginine	¹⁵ N	¹⁵ N	
Tyrosine	¹⁵ N	1- ¹³ C	¹⁵ N
Alanine		¹⁵ N	¹⁵ N
Threonine	¹⁵ N	¹⁵ N	¹⁵ N
Glycine	1- ¹³ C		
Aspartate			1- ¹³ C

In-cell NMR: schematic overview of different approaches

Deciphering interaction networks in cell

Barbieri et al., Sci. Report 2015, 14456

Effects of a paramagnetic tag on ¹H and ¹³C spectra

Visible in ¹H and ¹³C spectra

Comparison of α-synuclein in different cell lines and *in vitro*

Theillet, Selenko et al.., Nature 2016, 45-50

Technological innovations

Ascend

0000

Numerical processing:

- Filtering
- Data management and integration
- Structure calculation software

Assignment unknown Position known only approximately HN8-HA8 HN12-HB11 Position known only approximately HN8-HA8 HN12-HB11 HN9-HA10 HN54-HA54 HN5-HA88

Assignment = Find mapping between expected and observed peaks.

Score for assignment

Position known

Presence of expected peaks

Positional alignment of peaks assigned to the same atom

Normality of assigned resonance frequencies

Optimization of assignment

Genetic algorithm combined with local optimization

GARANT

Assignment known

Christian Bartels et al.

- J. Comp. Chem. 18, 139-149 (1997)
- J. Biomol. NMR 7, 207–213 (1996)

Fully automated structure calculation algorithm (FLYA)

Development of structure calculation protocols

Incorporation of ambiguous distance restraints in iterative process protocols => M. Nilges, T. Herrmann

Software ARIA, UNIO

Rieping W., Habeck M., Bardiaux B., Bernard A., Malliavin T.E., Nilges M. (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381-382.

Volk, J.; Herrmann, T.; Wüthrich, K. J. Biomol.NMR. 2008, 41, 127-138..
Many structural parameters

Use of Ambiguous Interaction Restraints for soft docking

Domingez C, Boelens R, Bonvin A, J. Am. Chem. Soc. 125, 1731-1737 (2003).

Use of Ambiguous Interaction Restraints for soft docking

High-field NMR facility @ IBS Grenoble

National users

SEVENTH FRAMEWORK

European users

~ 25 access days/year

Isotopic Labelling Platform@ IBS Grenoble

- E. Coli Overexpression
- Optimisation in D₂O
- Uniform labelling ²H, ¹³C, ¹⁵N
- Specific Labelling
- Users access program:

Cell-Free Platform @ IBS

- In vitro Expression
- Large scale production > 1 mg
- Soluble and membrane proteins
- RNAs Production
- Coexpression, large assemblies
- Isotopic Labelling ²H, ¹³C, ¹⁵N
- Users access programs :

RNase free wetlab

Isotopic labelling

Large assembly

lionel.imbert@ibs.fr

BISON

Bridging Structural Biology with Biological Synthesis and Self Assembly to Reveal Key Processes in Living Systems

PROJECT AIM

To stimulate scientific excellence and innovation capacity of CEITEC MU through collaboration with three internationally-leading counterparts – University of Vienna, Université Grenoble Alpes, and University of East Anglia – that will foster practical relevance of research towards high value-added applications.

RESEARCH AREAS

- Cell and structural biology
- Biological chemistry and synthetic biology

EITEC

> New generation of therapeutics

PROJECT ACTIVITIE

- > Lectures and short courses of invited experts
- > Short-term and mid-term secondments
- → Joint supervision of young researchers
- Workshops, summer schools, and other events

www.twinning-bison.eu

CALL: H2020-TWINN-2015 / PROJECT NUMBER: 692068 / DURATION: 01. 01. 2016 - 31. 12. 2018 / EC CONTRIBUTION: 996 375 € This project has received funding from the European Union's Horizon 2020 research and Imonalion programme under grant agreement Ne 602068.

universität

Looking for new partnerships to raise structural biology PHD programs