

Contributions de la RMN à la biologie structurale : Approches multi-échelles spatiales et temporelles

Ewen Lescop, ICSN, Gif-sur-Yvette Ecole d'Oléron Renafobis, 21 juin 2017

- Considérations pratiques de RMN et protéines
- 🖙 Considérations générales sur l'importance des mouvements en biologie
- remps et signaux RMN
- Ref Méthodes RMN pour accéder aux différentes échelles de temps

Abondance naturelle

Un cadeau de la nature

Noyau	Abondance naturelle (%)	Rapport gyromagnétique (10 ⁷ xrad/Txs)	ν ₀ à 11.7 T	Sensibilité relative
¹ H	99.98	26.752	500.13	1
¹³ C (S=1/2)	1.11	6.728	125.76	1.6%
¹⁵ N (S=1/2)	0.36	-2.712	50.70	0.1%

Le noyau le plus abondant dans une protéine est aussi celui le plus sensible parmi les isotopes H,C,N!

Abondance naturelle

Au-delà de ~100 résidus, l'encombrement des spectres rend l'attribution quasiment impossible

La 2D ne suffit pas

Les superpositions spectrales deviennent inextricables

Res risques de mauvaise attribution sont augmentés

Solution: injecter plus d'informations

et autres: marquages spécifiques de certains acides aminés

Les spectres ¹⁵N-HSQC restent (presque parfaitement) résolus même pour des protéines > 600 aa (acides aminés)

Marquage ²H / ¹³CH₃

On enlève un maximum de protons pour les remplacer par des deutérons

Les 500 pics ¹H/¹⁵N des acides aminés "rigides" sont trop larges pour être visibles

Les 100 pics ¹H/¹⁵N visibles se comportent comme une IDP: raies fines, intenses, au centre du spectre ¹H et facilement attribuables

Les 500 pics ¹H/¹⁵N des acides aminés "rigides" sont trop larges pour être visibles

Ne pas voir les signaux RMN: un avantage?

...mais voit très bien les éléments

Protéine: de ~1 μM à 5 mM

🖙 Volume: 200 à 500 μL

Tampon: pas de restriction a priori

Attention au pH si spectre ¹⁵N (labilité de H_N accélérée)

Reference en sel (pas trop élevée mais alternatives)

Image: Un peu (5-10%) de D₂O pour la stabilité du spectromètre (lock)

- 🖙 Considérations pratiques de RMN et protéines
- 🖙 Considérations générales sur l'importance des mouvements en biologie
- Temps et signaux RMN
- Ref Méthodes RMN pour accéder aux différentes échelles de temps

Des échelles très lentes : s-jour- an

à intermédiaire lent: ms-s

à intermédiaire rapide: µs-ms

et finalement rapide: ps-ns

Mouvements dans la gamme picoseconde-nanoseconde

https://www.youtube.com/watch?v=raQI0I69kvg

Les protéines sont des molécules plastiques

Chaperone

http://home.cc.umanitoba.ca/~joneil/Gro-ribbon.mpg

http://chem-faculty.ucsd.edu/kraut/dhfr.html

Techniques pour accéder à la dynamique de protéine

B factors	time scales static disorder, crystal contacts,
size/shape modifications timescales (ps-ns) for ¹ H positions	
ensemble / single molecule cellular context	probes
large molecular assemblies	
	Forcefields Short timescales
 \$\vee\$ 10⁻¹² ↔ 10⁵ s \$\vee\$ Site-specific information \$\vee\$ multiple atomic probes ¹H, ²H, ¹⁵N, ¹³C, ³¹P, \$\vee\$ Simultaneous monitoring of probes \$\vee\$ kinetic & thermodynamic profile of 	⇔ isotope labeling ⇔ quantities ⇔ size limitation ⇔ complexity of the method ?
	B factors size/shape modifications timescales (ps-ns) for ¹ H positions ensemble / single molecule cellular context large molecular assemblies \$\vee 10^{-12} \rightarrow 10^5 s \$\vee 510^{-12} \vee 510

- Considérations pratiques de RMN et protéines
- © Considérations générales sur l'importance des mouvements en biologie
- Temps et signaux RMN
- Ref Méthodes RMN pour accéder aux différentes échelles de temps

- Les mouvements moléculaire influencent les paramètres RMN: déplacement chimique - largeur de raie - relaxation
- 🖙 Echelles de temps caractéristiques de RMN:
 - ☞ Durée d'une expérience RMN (1D: s-mn / 2D: mn-h / 3D : h-jour)
 - ITI: (ms-s) retour à l'équilibre pour un ensemble de spins
 - 🖙 <u>T2</u>: (ms-s) durée de vie du signal RMN
 - Echelle de temps spectral (déplacement chimique) : $1/\Delta v$ (ms) Δv : différence de déplacements chimiques entre deux sites
 - ⊯ <u>Echelle de temps de Larmor</u>: $1/(2\pi\omega_0)$ (ps-ns)

$$\label{eq:solution} \begin{split} &\omega_0 = \gamma B_0 \\ \gamma: \mbox{ noyau (1H, 15N, ...) dépendant} \\ &B_0: \mbox{ champ dépendant ($500MHz, $800MHz, ...)} \\ &{}^1$H à $800MHz / ^{13}C à $200MHz / 15N à $800MHz} \end{split}$$

- 🖙 Considérations générales sur l'importance des mouvements en biologie
- remps et signaux RMN, quelques points théoriques
 - 🖙 Un peu de thermodynamique / cinétique
 - Déplacements chimiques
 - La question de l'échelle de temps
 - Relaxation
- Méthodes RMN pour accéder aux différentes échelles de temps

Les états A et B peuvent être différemment peuplés (p_A and p_B)

Ea: énergie d'activation

$$\frac{p_A}{p_B} = e^{\frac{E_B - E_A}{k_B T}}$$

p_A

p_B

Une grandeur intéressante est $k_{ex} = k_{AB} + k_{BA}$ k_{ex} est reliée à Ea (loi d'Arrhenius)

vitesse k_{AB} et k_{BA} .

Etat B

Chaque état est caractérisé par des observables RMN qui peuvent être distincts.

Que voit-on alors?

Etat A

En l'absence d'échange entre A et B

Si l'échange est très rapide

Spectres RMN et échange

En solution, les molécules échantillonnent toujours un ensemble de conformations (structures)

Les déplacements chimiques sont sensibles à la conformation, ie à la structure à un instant t

<u>Comment les spectres RMN reflètent la modulation temporelle des</u> <u>déplacements chimiques?</u>

ICSN Bildeness Halveles

Random coil: pelotte statistique, toutes les conformations stables sont échantillonnées de manière équiprobables

Random coil vs structure

Chaque conformation est associée à une population et une valeur de déplacement chimique

L'ensemble est échantillonné très rapidement, on observe le déplacement chimique moyenné et pondéré

Faible dispersion spectrale

Le seul paramètre est la séquence primaire

Structuration: certaines conformations sont préférées

Le déplacement chimique moyenné et pondéré dévie du random coil.

Le profil de variation des déplacements chimiques (par rapport au random coil) est riche en information sur la structure et la dynamique d'une protéine

TALOS+: Shen, Y, Delaglio, F., Cornilescu, G. and Bax, A J. Biomol. NMR, 44, 213-22 (2009)

Considérons une protéine P interagissant avec une autre molécule L

$$P+L \stackrel{k_{on}}{\underset{k_{off}}{\leftarrow}} PL$$

A l'équilibre, les concentrations ([P], [L], [PL]) des trois espèces sont reliées par:

$$\frac{[P][L]}{[PL]} = K_d$$

La constante de dissociation Kd renseigne sur la stabilité de l'interaction:

faible Kd (e.g. nM) -> haute concentration du complexe PL haut Kd (mM) -> basse concentration du complexe PL

Interaction protéine-ligand et RMN

La fraction de protéine libre et liée dépend de la concentration des espèces en solution et de K_d .

$$k_{ex} = k_{on} [L] + k_{off}$$

Une simple titration donne une idée de l'affinité On peut aussi obtenir K_d , stoechiométrie, parfois k_{on}/k_{off}

Waudby et al. Sci Rep. 2016;6:24826.

Waudby et al. Sci Rep. 2016;6:24826.

Relaxation T1 et T2

Le temps de relaxation longitudinal T1 définit le temps de retour à l'équilibre du système de spin (ie lz).

o II conditionne le délai entre deux accumulations o Les mouvements plus lents que T1 ne peuvent pas être caractérisés à partir d'un seul spectre RMN.

Le temps de relaxation transversale T2 définit le temps de vie du signal RMN.

• Le temps de relaxation T2 définit la largeur des résonances

Il existe d'autres temps de relaxation mais plus difficile à mesurer

T1: le temps d'équilibration

Le temps de relaxation du système vers l'équilibre après l'application d'une impulsion courte de champ B_0 (excitation)

Le temps de relaxation T_1 est relié au changement de population entre les états d'énergie α and β

Les changements de niveaux d'énergie (β -> α transition) absorbent/ libèrent de l'énergie Quelle est l'origine de cette énergie?

Le phénomène physique des transitions

 Processus stochastique (non corrélé d'une molécule à une autre)

T2: durée de vie d'une cohérence / signal RMN

$$M_x(t) = -M_{eq}sin(\omega_0 t)exp(-t/T_2)$$

Considérons 3 spins associés à 3 copies d'une même molecule

Paramètres gouvernant la relaxation

T=1/R

Cavanagh et al. 2006, Fig. 5.8

La relaxation dépend de: Champ B_0 Nature des spins (¹H, ¹⁵N, ...) Taille des molécules Mouvements internes Température etc.....

Petites Molécules globulaires Grosses Molécules globulaires

🖙 Considérations générales sur l'importance des mouvements en biologie

Image: Temps et signaux RMN

Méthodes RMN pour accéder aux différentes échelles de temps

Des échelles très lentes : s-jour- an

à intermédiaire lent: ms-s

à intermédiaire rapide: µs-ms

et finalement rapide: ps-ns

Le bloc élémentaire est répété pour augmenter le rapport signal sur bruit ou pour échantillonner la dimension indirecte (2D-3D-nD....)

Expérience de cinétique

Prendre un cliché instantané à chaque instant Δt

Corréler les changements spectraux avec le phénomène observé

Neuroglobin: une hémoprotéine

180°

Hème B est presque symétrique

Neuroglobine: deux orientations dans la poche

Les deux orientations de l'hème (A et B) sont présentes dans la neuroglobine

La forme minoritaire A lie CN⁻ 5 fois plus vite que la forme majoritaire

Exemple: le chemin de repliement (folding) de la β_2 -Microglobulin

Corazza A, et al. J Biol Chem. 2010 285(8):5827-35.

Mécanisme de refolding

Corazza A, et al. J Biol Chem. 2010 285(8):5827-35.

🖙 Considérations générales sur l'importance des mouvements en biologie

Image: Temps et signaux RMN

Méthodes RMN pour accéder aux différentes échelles de temps

Des échelles très lentes : s-jour- an

à intermédiaire lent: ms-s

à intermédiaire rapide: µs-ms

et finalement rapide: ps-ns

L'aimantation peut être stockée pendant la séquence d'impulsion dans un état Mp pendant une durée τ_m puis reconvertie en Mx pour la détection

Tout phénomène dynamique ayant lieu pendant τ_m peut être étudié. La durée maximale τ_m dépend de la durée de vie de Mp (et donc de sa relaxation)

Pour des protéines:

 $T_1^{(1H)} \sim T_1^{(15N)} \sim 1s$ $T_2^{(1H)} \sim T_2^{(15N)} \sim 10-100 \text{ms}$

L'aimantation à une durée de vie plus longue si elle est stockée sur Mz

Echange lent entre deux conformations

Spectroscopie d'échange ZZ

Stockage de l'aimantation sur ¹⁵N durant τ m = 100 ms

Wauer et al. EMBO J (2015)

Stockage de l'aimantation sur ¹⁵N durant 100 ms

 $k_{ex} = 2s^{-1}$

Wauer et al. EMBO J (2015)

Supplementary Figure 4

Détermination des deux structures en échange

Forme retractée

Forme relâchée Similaire à Ub non phosphorylée

L'équilibre dépend du pH

Détermination de la structure 3D de deux formes non purifiables La phosphorylation rend la structure de l'ubiquitine sensible au pH et donc aux interactions Dong X et a

Dong X et al. PNAS (2017)

Folding upon binding

Les domaines TB/WH2 régulent la polymérisation de l'actine (+ ou -)

Peptide seul : complètement destructuré

Peptide en complexe avec l'actine F: adopte une structure en deux hélices α

Mêmes spectres donc mêmes structures ... mais ... de dynamique différente

Paysage conformationnel de RCPG

Une seule isoleucine I229 dans le récepteur BLT2 Marquage 2H uniforme avec reprotonation des isoleucines.

On s'attend à un seul signal dans le spectre $^{\rm 13}{\rm C}$ HSQC

5 pics = 5 états conformationnels en échange lent Intensité = population

Paysage conformationnel de RCPG

🖙 Considérations générales sur l'importance des mouvements en biologie

Image: Temps et signaux RMN

Méthodes RMN pour accéder aux différentes échelles de temps

Des échelles très lentes : s-jour- an

à intermédiaire lent: ms-s

à intermédiaire rapide: µs-ms

et finalement rapide: ps-ns

La contribution d'échange (R_{ex}) peut être réduit par l'application d'une séquence spécifique CPMG ou spin-lock (T1 ρ):

$$\mathsf{R}_{2app} = \mathsf{R}_2 + \mathsf{R}_{ex}(\tau_{cp})$$

$$v_{cp} = 1/\tau_{cp}$$

Dans le cas de dispersion de relaxation (CPMG)

 $\Delta \omega = \omega_A - \omega_B$

(3) Cinétique (k_{ex})

Exemple: le cas de l'annexine

Residue number

Mouvement collectif et concerté de structures secondaires L'arrangement des deux hélices change à l'échelle de la milliseconde

Structure RMN du mutant L99A/T4L du lysozyme (état excité peuplé à 3%)

Structure RX du mutant L99A/T4L du lysozyme (état fondamental)

Bouvignies et al. Nature (2012)

🖙 Considérations générales sur l'importance des mouvements en biologie

Image: Temps et signaux RMN

Méthodes RMN pour accéder aux différentes échelles de temps

Des échelles très lentes : s-jour- an

à intermédiaire lent: ms-s

à intermédiaire rapide: µs-ms

et finalement rapide: ps-ns

$$\label{eq:taucorrelation} \begin{split} \tau_{\mathsf{c}}: \text{temps requis pour une molécule} \\ \text{pour tourner de 1 rad} \end{split}$$

S²: paramètres d'ordre décrit amplitude du mouvement interne

S²=1 si complètement rigide S²=0 si complètement flexible

 τ_{e} : temps de corrélation des mouvements internes

Le temps de corrélation $\tau_{\rm c}$ décrit la réorientation moléculaire

Et dépend de la taille de la protéine (masse m), de la température T et de la viscosité (ρ):

$$au_{m{c}} = rac{\eta^{*}V}{k_{B}T}$$
 Equation de Stokes-Einstein

 η^* : viscosité du milieu, k_B : constante de Boltzmann, T : température

 $/ m / \rho \rightarrow T \implies / \tau_c \implies$ Raies RMN élargies

Relaxation et densité d'énergie $J(\omega)$

 15 N R₁, R₂ et NOE dépendent des mouvements aux fréquences 0, $\omega_{\rm H}$ et $\omega_{\rm N}$ soit ~1000 MHz (ns) et ~100 MHz (10ns)

ASP2: une protéine de liaison aux odeurs

Nombre de NOE/résidu

La grande dispersion structurale de la boucle est liée au faible nombre de contraintes

Vraie dynamique interne ou problème expérimental?

Residue number

Mouvements dans des boucles

Permet la régénération du cytochrome P450 :

- 1. pour la biosynthèse et la dégradation de molécules endogènes
- 2. détoxification and biodégradation de xénobiotiques (drugs)

La structure RX de la CPR

Est-ce que cette conformation est préservée en solution ou biaisée par le packing?

¹H-¹⁵N TROSY spectrum (950MHz, 37°C)

Relaxation ¹⁵N : un outil pour l'étude de dynamique interdomaine

- Sans mobilité interdomaine: La protéine se comporte comme un corps rigide i.e. comme une grosse protéine avec un grand τ_c
- Avec mobilité interdomaine: Chaque domaine se comporte différemment Comme deux petites protéines avec des petits τ_c

La CPR est rigide en solution

Même temps de corrélation pour les deux domaines (30ns)

Les Couplages Dipolaires Résiduels (RDC) sont mesurés en dissolvant et en alignant partiellement la protéine dans un milieu anisotrope (PEG C12E5 / hexanol)

La structure cristalline de la CPR est préservée en solution au moins dans 20mM Tris-HCl, pH 7.4 (ie sans sel)

SAXS montre un équilibre à 2 états dépendant du sel

Small Angle RX scattering curve

CPR explore un autre état conformationnel à haute force ionique!!

Des ponts salins sont présents à l'interface La haute force ionique casse ces ponts salins.

Cinétique de l'ouverture/fermeture

Echange rapide à l'échelle des déplacements chimiques (k_{ex} >>> 10³ s⁻¹) entre les états verrouillés et déverrouillés

CPR adopte un équilibre en solution

Conclusion:

- RX, SAXS et RMN pour l'étude de protéines multidomaines

- Ne pas hésiter à collecter des données dans différentes conditions pour identifier des équilibres et faciliter l'analyse structurale

Take-home message

- La RMN peut faire des structures 3D sur des protéines de poids moléculaires limités...

... mais la RMN peut bien plus, <u>sans limite de taille</u>

- Utiliser la RMN pour voir les zones invisibles en RX (ou cryoEM) car trop flexibles, et <u>sans limite de taille</u>
- Structure haute résolution par RX (ou cryo EM) puis étude en solution par RMN, SAXS, ...ou utilisation de RMN pour faciliter cristallisation
- La RMN: un outil pour l'étude d'interaction moléculaire (protéine/ligand): thermodynamique, cinétique, comme ITC, fluorescence, MST, BLI... + STRUCTURE Pas de limite de Kd, pas de marquage gênant, en solution ...mais cher? Quantité de matière?

FIN

Description du mouvement de liaisons H-N

Considérons une liaison N-H qui échantillonne toutes les directions de l'espace

La fonction d'auto-corrélation G(t) décrit la perte de similarité du vecteur H-N après un certain temps t (par rapport à t = 0)

L'échelle de temps de ce processus est décrit par le temps caractéristique τ_c (temps de corrélation)

La fonction de densité spectrale dépend des mouvements

Relaxation de spin

Mouvements et relaxation

$$\begin{array}{lll} R_{1}(^{15}N_{z}) &=& (3d+c)J(\omega_{S}) + dJ(\omega_{I} - \omega_{S}) + 6dJ(\omega_{I} - \omega_{S}) \\ R_{2}(^{15}N_{x,y}) &=& \frac{6d+2c}{3}J(0) + \frac{3d+c}{2}J(\omega_{S}) + \frac{d}{2}J(\omega_{I} - \omega_{S}) + 3dJ(\omega_{I}) + 3dJ(\omega_{I} + \omega_{S}) \\ \sigma^{nOe} &=& d[6J(\omega_{I} + \omega_{S}) - J(\omega_{I} - \omega_{S})] \end{array} \qquad \qquad \begin{array}{ll} d = \left(\frac{\mu_{0}}{4\pi}\right)^{2} \frac{\gamma_{I}^{2}\gamma_{S}^{2}\hbar^{2}}{4r^{6}} \\ c = \frac{\omega_{S}^{2}\delta_{CSA}^{2}}{3} \end{array}$$

Sur la base d'un modèle simple de mouvement global, on peut prédire R1, R2 and NOE

$$\longrightarrow J(\omega) = \frac{2}{5} \frac{\tau_c}{1 + \omega^2 \tau_c^2}$$

$$J_{LP}(\omega) = S^2 \frac{\tau_c}{1 + (\omega \tau_c)^2} + (1 - S^2) \frac{\tau'_e}{1 + (\omega \tau'_e)^2}$$

avec $\frac{1}{\tau'_e} = \frac{1}{\tau_c} + \frac{1}{\tau_e}$

S²: paramètres d'ordre: S²=1 si complètement rigide S²=0 si complètement flexible

 τ_e : temps de corrélation des mouvements internes

 ω (rad/s)

Si le spin N s'échange entre le site (A) et le site (B) à la vitesse $k_{ex}=1/\tau_{ex}$ ($k_{ex}=\mu s-ms$))

Mouvement interne lent (échange entre deux ou plusieurs sites) -> Augmentation de ¹⁵N R2 -> Elargissement de raie

Les ligands HBR et HMBR deviennent fluorescents au contact de la protéine Y-FAST

La structure cristallographique de Y-FAST est un dimère: réel ou pas en solution?

Ligand	Température	τc (expérimental)	τc (expérimental) prédit
			pour un monomère
Sans HBR	293K	8.0 ± 0.1ns	8.56 ns
Avec HBR	293K	7.4 ± 0.05ns	8.56 ns

Y-FAST est un monomère en solution: OUF!!!!!!!!

Plamont MA et al. PNAS (2016)