# Xray diffraction by molecular crystals: a (short?) introduction

Laurent Maveyraud, Oléron 2016

# Crystallogenesis of proteins



Many crystallization assays (>>1000) are required to obtain suitable protein crystals.

Crystallization usually performed by slow evaporation of water (various pH, precipitating agents...).

#### Methodology:

Preliminary screens (96-solutions kits, robotized)

Crystal optimization of (24-wells, manually set up)

Further readings: McPherson, 2014, Acta Cryst F70:1445 McPherson, 2004, Methods, 34:254

#### overview

- Crystals: How to get them? What do they look like?
- Some theory about diffraction: structure factors, reciprocal lattice, Ewald's sphere
- Data collection: crystal conditionning, practical aspects
- Data processing: XDS, mosflm, assessing data quality
- "Stéphane, how do we solve a structure with these data?"

#### Crystallogenesis of proteins



#### Protein crystals, symmetry



#### Protein crystals and symmetry



As proteins are chiral, only rotation and translations allowed in protein crystals: 65 possible space groups.

Symmetry results in equivalent positions.

#### Protein crystals and symmetry



# You can have more than one copy of the protein in the asymmetric unit (Non Crystallographic Symetry)

#### Protein crystals and symmetry



### You have a crystal? So what?





Spot position depends on cell parameters (**a**, **b** and **c**) Spot intensity depends on the structure of the molecule

#### Crystals and diffraction: Ewald's sphere



A wave is scattered when a node of the reciprocal lattice (indices h k l) touches the Ewald's sphere. The structure factor (amplitude F and phase  $\phi$ ) of the diffracted wave is :

$$\mathbf{F}(hkl) = N_{cell} \cdot \Sigma f_{j} \cdot \exp(-2\pi(hxj + kyj + lzj))$$

## Getting ready for data collection

• Xrays can fry your crystals: better cool them!



#### Collecting data



You want to be sure to collect every diffracted beam! That is, all nodes of the reciprocal lattice should hit the Ewamd's sphere: rotate the crystal while exposing it to Xray

#### Collecting data: the oscillation method

- How many images to collect ?
  - Crystal symmetry, phasing method
- Which oscillation angle ?
  - Cell parameters, type of detector, type of processing
- Which crystal to detector distance?
  - Resolution limit of the crystal, cell parameters
- Which exposure time?
  - Type of detector, no saturated spots

#### Collecting data



#### Collecting data: the oscillation method

With recent detectors (Pilatus) the crystal is rotated continuously (shutterless data collection).



Further readings: Evans, 1999, Acta Cryst, D55:1771 Dauter, 1999, Acta Cryst, D55:1703

#### Collecting data: the oscillation method



#### In theory:

- perfect crystal: reciprocal lattice is built of points
- perfect beam (no wavelength dispersion, no divergence...)

#### Collecting data: let's face reality



- perfect crystal: reciprocal lattice is built of points
- perfect beam (no wavelength dispersion, no divergence...)



#### Real life:

- mosaic crystal
- real beam (wavelength dispersion, divergence...)

#### Collecting data: let's face reality

Consequences for the Ewald's construction



#### Collecting data: let's face reality

Consequences for the Ewald's constuction



#### Processing data: XDS, iMosflm)

Three steps for data processing:

- Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry
  - For each diffraction spot, you know Miller indices
  - Symmetry derived from cell parameters: it's only a hypothesis !!!!







#### Processing data: XDS, iMosflm)

Three steps for data processing:

- Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry
  - For each diffraction spot, you know Miller indices
  - Symmetry derived from cell parameters: it's only a hypothesis !!!! If the cells seems to obey to some symmetry constraints, it's likely because this symmetry is present in the crystal.
- Now that we have a unit cell and an orientation, we can predict spot position on any frames

#### Processing data: XDS, iMosflm

Three steps for data processing:

- Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry
  - For each diffraction spot, you know Miller indices
  - Symmetry derived from cell parameters: it's only a hypothesis !!!!
- Integration: for each spot on each frames, measure the intensity
  - Locate spot, assign pixel to « background » or to « spot »
  - Sum the intensity for « spot » pixels
  - Profile fitting (2D iMosflm, 3D XDS)



#### Processing data: iMosflm

2D profile fitting: wide slicing





Detector surface splitted in 9 or 25 regions. Profiles are learned for intense well defined spots.

#### Processing data: XDS

3D profile fitting: fine slicing



#### Processing data: XDS, iMosflm

#### Three steps for data processing:

- Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry
  - For each diffraction spot, you know Miller indices
  - Symmetry derived from cell parameters: it's only a hypothesis !!!!
- Integration: for each spot on each frames, measure the intensity
  - Locate spot, assign pixel to « background » or to « spot »
  - Sum the intensity for « spot » pixels
  - Profile fitting (2D iMosflm, 3D XDS)
- Scaling of data: correct for variation in diffracting volume, beam intensity variations,...
  - Use equivalent reflections to place all images: uses the symmetry of the crystal!

#### Symmetry of reciprocal space



#### Crystal symmetry: equivalent positions

x, y, z y, -x, z

-x, -y, z -y, x, z

Symmetry of diffracted intensities: equivalent reflections

> h, k ,l k, -h, I

-h, -k, l -k, h l

-k, h, -l

-h, -k, -l

k, -h, -

## Processing data: XDS, iMosflm

#### Three steps for data processing:

- Indexing data: find possible cell parameters, crystal orientation, guestimate
  - For each diffraction spot, you know Miller indices
  - Symmetry derived from cell parameters: it's only a hypothesis !!!!
- Integration: for each spot on each frames, measure the intensity
  - Locate spot, assign pixel to « background » or to « spot »
  - Sum the intensity for « spot » pixels
  - Profile fitting (2D iMosflm, 3D XDS)
- Scaling/merging of data:
  - Scaling: correct for variation in diffracting volume, beam intensity variation,. Use the symmetry of the crystal (validate, or not, the symmetry hypothesis from the indexing step)
  - Merging: average different observations of equivalent reflections, compute data processing statistics

#### Checking the quality of your data

| SUBSET OF DESCRIPTION LIMIT |        | ATA WITH<br>OF REFL<br>UNIQUE |       | ISE >= -3.0 AS<br>COMPLETENESS<br>OF DATA |       |       | UTION<br>COMPARED | I/SIGMA | R-meas | CC(1/2) | Anomal<br>Corr |
|-----------------------------|--------|-------------------------------|-------|-------------------------------------------|-------|-------|-------------------|---------|--------|---------|----------------|
| 5.35                        | 6059   | 778                           | 779   | 99.9%                                     | 2.1%  | 2.7%  | 6059              | 67.08   | 2.3%   | 100.0*  | 54*            |
| 3.80                        | 10814  | 1395                          | 1395  | 100.0%                                    | 2.7%  | 2.7%  | 10814             | 67.86   | 2.9%   | 99.9*   | 26*            |
| 3.11                        | 13860  | 1797                          | 1797  | 100.0%                                    | 2.9%  | 2.8%  | 13860             | 63.55   | 3.1%   | 99.9*   | 16*            |
| 2.69                        | 16578  | 2139                          | 2139  | 100.0%                                    | 3.4%  | 3.4%  | 16578             | 49.96   | 3.7%   | 99.9*   | 6              |
| 2.41                        | 18603  | 2406                          | 2406  | 100.0%                                    | 4.2%  | 4.1%  | 18603             | 42.43   | 4.5%   | 99.9*   | 5              |
| 2.20                        | 20632  | 2675                          | 2675  | 100.0%                                    | 4.9%  | 4.9%  | 20632             | 35.82   | 5.2%   | 99.9*   | 8              |
| 2.04                        | 22300  | 2899                          | 2899  | 100.0%                                    | 6.0%  | 6.1%  | 22300             | 29.20   | 6.4%   | 99.8*   | 2              |
| 1.91                        | 23848  | 3113                          | 3113  | 100.0%                                    | 8.4%  | 8.7%  | 23848             | 21.33   | 9.0%   | 99.7*   | 5              |
| 1.80                        | 24479  | 3304                          | 3312  | 99.8%                                     | 12.2% | 13.0% | 24467             | 14.55   | 13.1%  | 99.4*   | 1              |
| total                       | 157173 | 20506                         | 20515 | 100.0%                                    | 3.9%  | 3.9%  | 157161            | 37.30   | 4.2%   | 99.9*   | 7              |

# Checking the quality of your data

Table 1

|                  | 55.70 – 1.80 Å | 1.84 – 1.80 Å |  |  |
|------------------|----------------|---------------|--|--|
| N observations   | 156,728        | 8,565         |  |  |
| N unique         | 11,204         | 646           |  |  |
| Multiplicity     | 14.0           | 13.3          |  |  |
| Completeness (%) | 100.0          | 100.0         |  |  |
| Rsym or Rmerge   | 0.053          | 0.145         |  |  |
| Ι/σ              | 34.8           | 15.2          |  |  |

Is Rsym/Rmerge a good indicator of data quality?

### Checking the quality of your data

|                  | 55.70 – 1.80 Å | 1.84 – 1.80 Å |  |  |
|------------------|----------------|---------------|--|--|
| N observations   | 156,728        | 8,565         |  |  |
| N unique         | 11,204         | 646           |  |  |
| Multiplicity     | 14.0           | 13.3          |  |  |
| Completeness (%) | 100.0          | 100.0         |  |  |
| Rsym or Rmerge   | 0.053          | 0.145         |  |  |
| Rmeas            | 0.057          | 0.155         |  |  |
| CC1/2            | 0.999          | 0.995         |  |  |
| Ι/σ              | 34.8           | 15.2          |  |  |

# Checking the quality of your data Wilson Plot



## Crystal/dataset pathologies

XTRIAGE analysis (Phenix)



What can we do with these data?

Stéphane... tell us about phases

| h      | k     | 1     | F         | SIGF     | DANO      | SIGDANO  | F(+)      | SIGF(+)  | F(-)                                    | SIGF(-)                                 |
|--------|-------|-------|-----------|----------|-----------|----------|-----------|----------|-----------------------------------------|-----------------------------------------|
| 0      |       |       | 0.00      | 0.00     | 0.00      | 0.00     | 0.00      | 0.00     | 0.00                                    | 0.0                                     |
| 0      | 0     | 2     | -1.00     | 0.00     | -1.00     | 0.00     | -1.00     | 0.00     | 0.00                                    | 0.0                                     |
| 0      | 0     | 3     | -1.00     | 0.00     | -1.00     | 0.00     | -1.00     | 0.00     | 0.00                                    | 0.0                                     |
| 0      | 0     | 4     | 101.12    | 6.29     | 0.00      | 0.00     | 100.92    | 9.00     | 100.05                                  | 9.1                                     |
| 0      | 0     | 5     | 5087.18   | 868.91   | 5087.18   | 868.91   | 5087.18   | 868.91   | 5004.75                                 | 871.4                                   |
| 0      | 0     | 6     | -1.00     | 868.91   | -1.00     | 868.91   | -1.00     | 868.91   | 5004.75                                 | 871.4                                   |
| 0      | 0     | 7     | -1.00     | 868.91   | -1.00     | 868.91   | -1.00     | 868.91   | 5004.75                                 | 871.4                                   |
| 0      | 0     | 8     | 712.77    | 26.26    | 0.00      | 0.00     | 713.90    | 35.18    | 706.38                                  | 40.0                                    |
| 0      | 0     | 9     | 251303.12 | 24365.59 | 251303.12 | 24365.59 | 251303.12 | 24365.59 | 246856.75                               | 27390.6                                 |
| 0      | 0     | 10    | -1.00     | 24365.59 | -1.00     | 24365.59 | -1.00     | 24365.59 | 246856.75                               | 27390.6                                 |
| 0      | 0     | 11    | -1.00     | 24365.59 | -1.00     | 24365.59 | -1.00     | 24365.59 | 246856.75                               | 27390.6                                 |
| 0      | 0     | 12    | 374.42    | 11.63    | 0.00      | 0.00     | 377.39    | 14.45    | 367.19                                  | 19.8                                    |
|        | ••••• | ••••• |           |          |           | •••••    |           |          | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|        | ••••• | ••••• |           |          |           |          |           |          | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
| 36     | 20    | 1     | 239.06    | 4.01     | -32.37    | 8.15     | 221.41    | 6.19     | 253.78                                  | 5.3                                     |
| n limi |       |       |           |          | ı         |          |           |          |                                         |                                         |