

1. Introduction

Type II topoisomerases

1. Introduction

Highly flexible et dynamic

Obtain a maximum of structural data combining several methods from different sources (time, groups, ...) in order to understand and to explain in 3D how this enzyme family is working

2. Premières informations structurales

• Electron Microscopy

Heterotetramer of M. luteus DNA gyrase

DNA gyrase in complex with DNA (541 pb)

First envelop proposing a 3D model for the entire DNA gyrase

Type II topoisomerases

2. Premières informations structurales

• Electron Microscopy

Kirchhausen et al, Cell 1985

Possible Conformational States of DNA Gyrase and of the Gyrase-DNA Complex

Schematic representation of arrangement of A and B subunits in DNA gyrase (a) (c) closed A-A contact and a open B-B contact (c) + DNA

(b) (d) open A-A contact and a closed B-B contact (c) + DNA (b) (d) open A-A contact and a closed B-B contact (c) + DNA

Note that opening the A-A contact in (d) involves double-strand scission

The loop of DNA is shown contained between lobes of the two B subunits. Alternatively, in (g), the arms of the DNA loop pass across the outer surface of the B subunits. (g-h) show one way in which strand passage can occur. A segment of the closed circular DNA passes through the open A-A contact and through the double-strand break. The gyrase molecule is omitted in (h) for clarity. This picture is consistent with either mode of B subunit/DNA interaction, as illustrated in (i) and (j). Completion of a reaction following this course would require closing the A-A contact and opening the B-B contact to allow exit of the inserted segment.

(d-f) show an alternative picture, consistent only with the S subunit/DNA binding mode shown in (d) and (i). One of the two arms of the DNA loop, constrained between B subunits and trapped by closure of the B-B contact, diffuses through the double-strand break (e). Completion of the reaction cycle requires rearrangement of the DNA after strand passages, closure of the A-A contact to open the B-B contact (f), and reformation of a bound DNA loop as in (d).

Type II topoisomerases

First step : crystal structure of isolated domains

Structure-function relationships of the *M. tuberculosis* DNA gyrase isolated domains

Type II topoisomerases

11

Type II topoisomerases

3. Crystallography : structures of the isolated domains

3. Crystallography : structures of the isolated domains

Type II topoisomerases

3. Crystallography : structures of the isolated domains

Type II topoisomerases

3. Crystallography : structures of the isolated domains

• The ATPase domain

2013 : ATPase of *M. tuberculosis* DNA gyrase 3ZM7

Type II topoisomerases

3. Crystallography : structures of the isolated domains

4. Crystallography : structures of « associated » domains

The DNA and quinolone binding pocket QRDR-B

Type II topoisomerases

4. Crystallography : structures of « associated » domains

The catalytic core

25

ATPase TOPRIM Breakage-reunion CTD

The 2 structures BRD+TOPRIM did not bring any information with respect to QBP 2007 : 1st structure of BRD+TOPRIM in complex with DNA

Type II topoisomerases

TOPRIM Breakage-reunion CTD

4. Crystallography : structures of « associated » domains

The catalytic core

2009 : 1st structures of BRD+TOPRIM with DNA and fluoroquinolones

ATPase

5. SAXS data on individual subunits

Type II topoisomerases

Fourth step : toward the structure of an entire enzyme ?

Type II topoisomerases

7. Towards a crystal structure of the entire enzyme ?

7. Towards a crystal structure of the entire enzyme ?

The 3 domains : ATPase + TOPRIM + BRD

Type II topoisomerases

8. Electron microscopy électronique : structure entière

Electron microscopy, 30 years later ...

Papillon et al, NAR 2013

Type II topoisomerases

8. Microscopie électronique : structure entière

- Electron microscopy, 30 years later ...
 - Catalytic cycle during the supercoiling activity

Type II topoisomerases

9. Autres techniques biophysiques

Single-molecule FRET

Smiley et al, PNAS 2007

temperature

fonction of

Following of the closing/opening of the DNA-gate by fluorescence

37

Papillon et al, NAR 2013

9. Autres techniques biophysiques

• Single-molecule FRET

B. subtilis DNA gyrase	Nucleotide cycle	Göttler et al, JMB 2007
B. subtilis DNA gyrase	DNA-gate predominantly in the closed conformation	Gubaev et al, PNAS 2009
B. subtilis DNA gyrase	Role of CTD in supercoiling cycle	Lanz et al, NAR 2011
B. subtilis DNA gyrase	Role of N-gate in T-segment capture and strand passage	Gubaev et al, PNAS 2011
B. subtilis DNA gyrase	Role of K ⁺ in nucleotide induced closure of N-gate	Gubaev et al, JBC 2012
B. subtilis DNA gyrase	Role of GyrA-box in DNA binding	Lanz et al, NAR 2012
<i>E. coli</i> topo IV	Role of CTD in substrate discrimination	Vos et al, JMB 2013
B. subtilis DNA gyrase	Spectrum of conformational states of DNA- and C-gates	Rudolph et al, JMB 2013
B. subtilis DNA gyrase	Mechanism of DNA supercoiling	Gubaev et al, DNAR 2014
B. subtilis DNA gyrase	C-terminal tail moderates DNA supercoiling activity	Lanz et al, JBC 2014

Type II topoisomerases

8. Conclusion - perspectives

41

43

Type II topoisomerases

8. Conclusion - perspectives

A 3D description at atomic scale of each step of the catalytic cycle

