Mirjam Czjzek Research Director of CNRS

Station Biologique de Roscoff (CNRS-UPMC Paris VI)

czjzek@sb-roscoff.fr

Marine Glycobiology

From genomes to structure/function relationship: the metabolism of macro-algal polysaccharides

Plan of presentation

- Position of SAXS with respect to other structural methods
- Data acquisition and experimental setup
- Brief theory and principles of small angle X-ray scattering
- ♦ What do we measure?
- Data interpretation : modeling structures into envelopes
- comparison (and complementarity) to crystallography quality control, advantages and limits

The basis of Small Angle X-ray Scattering and comparison to X-ray crystallography

advantages and limits

Techniques for structure determination of macromolecules

Origin of diffusion

 I_0

the diffusion arises from heterogeneity of density of scattering lengths between macromolecules and the surrounding solvent

While the diffusing material and its solvent are homogenous

The waves are scattered once or not at all (no multiple diffusion)

$$I(Q) \propto \frac{d\Sigma}{d\Omega}(Q) = \left| V_p^{-1} \int_{V_p^{-1}} \rho(r) e^{-Q \cdot r} d^3 r \right|^2$$

 $Q = \frac{4\pi}{\lambda}\sin\theta$

SAS in transmission mode with 2D detector

What are we measuring?

Detector dynamic range is important - Intensity ~ q-4

Important parameters to set up an experience

- minimum 5 concentrations \Rightarrow 2-10 mg of protein
- Dialysis buffers + radio protectant (DTT (TCDE), glycerol, etc.)
 - Cell : stopped-flow : exposure time 30 x 500ms 10 min for acquisition or HPLC

4m ---→

SWING Soleil

Sample

Experimental setup Argon National Lab USA

SAXS/WAXS setup at 12ID-B at APS

Experimental conditions

The radius of gyration

 \Rightarrow Mean square of atomic distances from center of gravity, (weighted by electron density $\rho(r)$)

- $\ln I(q) = \ln I(0) q^2 R_{g^2}/3$
- Determination of *average dimension* of the particle
- Determination of its molecular masse

 $I(0) \propto c.M_w/N$ (Cste)

Relation of R_G to molecular weight (Mw) – roughly linear ONLY for spherical proteins

\bm{R}_g : Mean square of atomic distances from center of gravity, (weighted by electron density $\rho(\bm{r})$)

In polymer physics, le radius of gyration is production is production is production is production is production. The object: $R_{g}^{2} = \frac{\int r^{2} \rho(r) dr}{\int \rho(r) dr}$ Gaussian chain $\bigotimes \left\langle R_{g}^{2} \right\rangle = N \frac{l^{2}}{6}$ $R_{g}^{2} = \frac{1}{5} (a^{2} + b^{2} + c^{2})$ Sphere
Thin rod
Thin disc
Cylinder $R_{g}^{2} = \frac{3}{5} R^{2}$ $R_{g}^{2} = \frac{L^{2}}{12}$ $R_{g}^{2} = \frac{R^{2}}{2}$ $R_{g}^{2} = \frac{R^{2}}{2}$ $R_{g}^{2} = \frac{R^{2}}{2}$ $R_{g}^{2} = \frac{R^{2}}{2}$

Guinier Plot: interactions & sample condition

Figures from: Putnam, D., et al. (2007) Quart. Rev. Biophys. 40, 191-285.

As well the form and the value of D_{max} vary for different options

SAXS and P(r) of different forms

Adapted from: Svergun, D., Koch, M. (2003) Rep. Prog. Phys. 66, 1735-1782.

Humicola insolens EGV native and truncated

Mw = 38 kDa N = 210+36+38 aa

	Rg (Å)	D _{max} (Å)
Catalytic domain	17.3 ± 0.3	45 ± 5
EGV without CBD	30.0 ± 0.4	100 ± 10
EGV full lenfth	33.5 ± 0.5	125 ± 5
CBD	9.2	31

Distance distribution function

Upon request zuox@anl.gov, tiede@anl.gov

Conclusions

