

Solution X-ray Scattering from Biological Macromolecules

Aurélien Thureau Beamline SWING, Synchrotron SOLEIL, Saint-Aubin, France **INTRODUCTION**

Principles of Small Angle X-ray Scattering in solution

SAXS is best used in combination with complementary (structural) information

Principles of Small Angle X-ray Scattering in solution

Structural information obtained from a scattering curve

biophysical parameters (size and shape type)
molecular mass, oligomerization state and volume.

Biophysical informations derived directly from the SAXS curve

• possible low resolution molecular shape (ab initio methods)

direct comparison with high resolution model
possible model of (un)structured missing parts
rigid body of complex

3D structural modeling → models compatible with SAXS data NOT a unique model, NO electron density map.

Structural information about macromolecules in solution

Nothing known (except the curve)

Shape determination

DAMMIN DAMMIF DENFERT

Known or hypothetical all-atom models

Model validation / elimination

Structure of subunits available

Zones of supposed high flexibility

Selection within an Ensemble of Random Conformations

EOM MES

Particles in solution

- A particle is described by the associated electron density distribution $\rho_p(r)$.
- In solution, what contributes to scattering is the *contrast* of electron density between the particle and the matrix $\Delta \rho(\mathbf{r}) = \rho_p(\mathbf{r}) \rho_0$ that may be very small for biological samples.

SAXS: a pair of measurements

To obtain scattering from the particles, buffer scattering must be subtracted, which also permits to significantly reduce contribution from parasitic background (slits, sample holder etc) which should be reduced to a minimum.

SE-HPLC / Solution Sampler

DATA ANALYSIS

Data Analysis

- Guinier Analysis
- Kratky plot : why is it so interesting ?
- **Real-space : Distance distribution function P(r)**

Behaviour at small angles : Guinier law

The scattering intensity of a particle can be described by a Gaussian curve in the vicinity of the origin. The validity domain actually depends on the shape of the particle and is around Q*Rg < 1.2 for a globular shape.

Prof. André Guinier 1911-2000 Orsay, France

Extrapolated intensity at origin

Guinier law, in log form :

$$ln[I(Q)] = ln[I(\theta)] - \frac{Q^2 R g^2}{3}$$

$$R_g^2 = \frac{\int_{V_r} \Delta \rho(\mathbf{r}) r^2 dV_r}{\int_{V_r} \Delta \rho(\mathbf{r}) dV_r}$$

ln(I(Q)) vs Q² : linear variation (Guinier plot). Linear regression on the experimental Guinier plot directly provides Rg and I(0).

Radius of gyration

Mass retrieval from Guinier analysis

An estimate of the molar mass of the molecule can be derived from the value of I(0)/c.

Typically : $M (kDa) = 1500 * I(0) (cm^{-1}) / C (mg/ml)$

Data Analysis

- Guinier Analysis
- Kratky plot : why is it so interesting ?
- **Real-space : Distance distribution function P(r)**

Kratky Plot

SAXS provides a sensitive means to evaluate the degree of compactness of a protein:

- To determine whether a protein is globular, extended or unfolded
- To monitor the folding or unfolding transition of a protein

Prof. Otto Kratky 1902-1995 Graz, Austria

Log{|} 1.0 --1.5 Unfolded -2 $\int_{0}^{2} I(q)$ q² I(q) versus q -2.5 Partially unfolded -3 -3.5 Folded 0.0 0.10.0 0.2-4 0.30.1 0.2 0.3 0.4 $q(\mathring{A}^{-1})$

Putnam, D., et al. (2007) Quart. Rev. Biophys. 40, 191-285.

Folded particle : *bell-shaped curve* (asymptotic behaviour $I(Q) \sim Q^{-4}$) Random polymer chain : *plateau* at large q-values (asymptotic behaviour in $I(Q) \sim Q^{-2}$) Extended polymer chain : *increase* at large q-values (asymptotic behaviour in $I(Q) \sim Q^{-1.x}$)

This is most conveniently represented using the so-called Kratky plot:

Kratky Plots of folded proteins

Folded proteins display a bell shape. Can we go further?

Dimensionless Kratky Plots of (partially) unfolded proteins

The curve increases at large Q as the structure extends.

Data Analysis

- Guinier Analysis
- Kratky plot : why is it so interesting ?
- Real-space : Distance distribution function P(r)

Distance Distribution Function p(r)

p(r) is obtained by histogramming the distances between any pair of scattering elements within the particle.

The distance distribution function characterises the shape of the particle in real space

CONCLUSIONS

• A scattering pattern can be calculated from atomic coordinates, thereby providing a link between crystal and solution work.

• Using SAXS patterns, ab initio methods can determine the shape of a molecule

• Rigid-body modeling allows one to propose models for complexes best fitting the data.

• Useful though limited structural information about flexible systems can be derived from SAXS data.

CONCLUSIONS

- ✓ The information content is limited and the method is best used in combination with other structural (cristallography, NMR, EM), dynamic (NMR, fluorescence, MALS), biochemical (e.g. cross-link + MS) and/or computational (data-driven docking, molecular dynamics) approaches.
- ✓ 3D modeling requires a monodispersed and ideal solution, which has to be checked <u>independently</u>.
- ✓ Otherwise :

