Sample preparations for structural studies by TEM

université *BORDEAUX

Olivier Lambert o.lambert@cbmn.u-bordeaux.fr Renafobis Oléron 2016

Biological samples in the electron microscope environment

Specimen

Detector

- They have to: - be thin enough
- They have to: - resist to the vacuum and to the electrons - stay in their native form

Preparation regarding the size of biological samples

Dehydrated / stained specimen

Frozen hydrated/ unstained specimen

2008

Thin Specimen : negative staining

freeze-plunging Cryo-electron microscopy

Thick Specimen : Plastic section

, Subramaniam Lab

chmn

Negative Staining

Support : grid coated with thin amorphous carbon

Negative Staining : Principle

Negative Staining : Examples of macromolecular assemblies

Tripartite efflux system (TSS1-like) Daury et al 2016, Nature comm

Measles nucleocapsid Pitch 5 nm Courtesy of G Schohen

Integrin α 5 β 1 in complex with fibronectin.

Negative staining and shadowing

Metal shadowing

- Aim :
 - Visualize the surface of particles
 - Handeness determination

• Technique :

- Heavy atom evaporation
- The sample is tilted in the evaporator

Renafobis Oléron 2016

Cryo electron microscopy

What we obtain

To be close to native structure we need to preserve the hydrated state

-pmr

Cryo electron microscopy : Vitrification

Vitrification under atmospheric pressure over a thin tickness ($<1\mu$ m) Vitrification under high pressure 2000 bars up to 200 μ m (cell tissues)

Renafobis Oléron 2016

Cryo electron microscopy: Holey carbon grid

Cryo electron microscopy: Cryogenic fluids

cryogen	T fusion(K)	Tébulition(K)	T fusion (C)	T ébulition(C)	T (ébul - fus)
ethane	89,7	184,4	-183,45	-88,75	-94,7
helium	2,2	4,2	-270,95	-268,95	-2
hydrogen	14,1	20,4	-259,05	-252,75	-6,3
methane	90,5	109	-182,65	-164,15	-18,5
azote	63,1	77,3	-210,05	-195,85	-14,2
propane	83,3	230,9	-189,85	-42,25	-147,6

cbmn

Cryo electron microscopy: What do you expect ? 50000X 500X 5000X Vitreous ice Particles in different (random) orientations

Cryo electron microscopy: What is a good cryo grid ?

Good amorphous ice -not crystalline ice -no « leopard skin »pattern -no contamination

Appropriate ice thickness -typically as thin as possible

Clearly visible particles -particle size and shape -buffer composition -defocus, movie mode, phase pla

Good particle distribution -in holes -dense but particles not touching -randomly distributed orientations

Cryo electron microscopy: Advantages and drawbacks

Cryo electron microscopy: Low dose acquisition

Advantages : hydrated state of the sample High resolution Small amount of sample

Drawbacks : Low contrast Highly sensitive to electron dose

Cryo electron microscopy: Automated data acquisition

Example : Automated data acquisition software EPU (FEI)

Atlas = image of the EM grid

Low magnification image X 5,000 Settings (defocus, electron dose) at high magnification x50 000
Image acquisition
Image acquisitio
Image acquisitio
Image acquisitio
Image a

Cryo electron microscopy: Projections suitable for 3D reconstruction

Cryo electron microscopy: Sample preparation workflow for high resolution structure determination

From Stark and Chari, 2015, Microscopy

- 1. Quality of purified protein (homogeneity, stability)
- 2. Distribution within the ice layer
- 3. Grid support

Improve the image "quality"

Optimize the buffer composition

-sample concentration -buffer composition -detergent Beware of high concentrations of -glycerol -sugars -salts -detergents

For Membrane protein, use lauryl maltose-neopentyl glycol and remove free detergent and micelle with Grafix

Hauer et al., (2015) Structure 23, 1769.

Improve the sample "stability"

Mild chemical fixation improves the stability of complex of protein (once deposited on the EM grid)

Improve the sample distribution

Use an extra thin carbon support

Improve the sample distribution

Use an extra graphene support

Improve the sample distribution

Use self assembled monolayers on gold grid

Meyerson Sci rep, 2014 Glutamate receptor

Use an extra graphene <u>oxide</u> support

Specimen (3 ml of 0.2 mg/ml) was applied to holey-carbon grids overlaid with **graphene oxide** (without plasma treatment) and left to adhere for 30 s.

lysenin pore (~1 mg/mL) in pure ice with detergent micelles in the background. .

CryoEM reconstruction at 3.1 Å of a 315 kDa lysenin nonamer

Improve the stability of the substate under electron beam

Lysenin pore on

graphene-oxide

Use a gold grid

a gold specimen support nearly eliminates substrate motion during irradiation

Russo & Passmore Science 2014

Compared with commercial am-C supports with nearly identical geometry, there was a 40-fold reduction movement. Apoferritin, 483 images , resolution 4.7 A.

Improve the sample distribution/stability

Plunging system

Start negative staining, then move to cryo

Get the more homogenous sample!

A lot of parameters can be changed Start with the easiest one If it is not working then try more sophisticated !

From Stark and Chari, 2015, Microscopy

Particle size for cryoEM

Size > 500 kDa ; 200 kDa currently for near-atomic resolution Symmetry: improves a lot ! Globular better than extended

HIV-1 integrase dimer (65 kDa) complexed with two Fabs (total of 165 kDa). 10 A resolution. Wu et al., 2012 Structure

ABC transporter TmrAB dimer (135 kDa) complexed with Fabs at 8.2 A resolution. Kim et al., 2015 Nature

Renafobis Oléron 2016

Cryo electron tomography: Sample which is not suitable for single particle analysis

Cryo-electron tomography

Cryo electron tomography: Sample which is not suitable for single particle analysis

3D tomogram reconstruction

SUBTOMOGRAM AVERAGING

3D translation and **3D Structure** rotation alignment

Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution Schur et al., Nature 2015

Cryo electron tomography on bacteria

BACTERIAL PILI

Architecture of the type IVa pilus machine

Yi-Wei Chang,^{1,2} Lee A. Rettberg,² Anke Treuner-Lange,³ Janet Iwasa,⁴ Lotte Søgaard-Andersen,³ Grant J. Jensen^{1,2}*

Science 2016

"BORDEAUX

Cryo electron tomography on thick samples

What can we freeze on the grid?

Bacterial Cells ~0.5 um

Small Cells ~2 um

Mammalian Cells ~5-10 um

cbmn

Renafobis Oléron 2016

Cryo electron tomography on cells grown on EM grid

Edges of the cell suitable for CET

Renafobis Oléron 2016

Cryo electron tomography on the ticker parts

Focused Ion Beam – FIB

(d) tomogram of an E. coli cell. (e) Tomogram of an MDCK cell. (f) Tomogram of a mitochondria of a yeast cell . Villa et al , Cur op Struct Biol, 2013

Examples of Cemovis

Hoenger A, & Bouchet-Marquis C. (2011) Cellular tomography. Adv Protein Chem Struct Biol.

Cryo electron tomography on tissues or pellet

CEMOVIS: Cryoelectron microscopy of vitreous section (40-100 nm thick) Dubochet and coll 2004

Example of Cemovis

Desmosome from skin Al-Amoudi et al. *Nature 2007, PNAS, 2010*

Correlative light electron microscopy

Locate an event by light microscopy and then find the same event at higher mag using cryoEM (or EM)

Use a probe visible by EM (electron dense) and fluorescent microscopy

Schellenberger et al, ultramicroscopy 2014

Renafobis Oléron 2016

The sample preparation step is crucial (as well as the purification and data collection)

other techniques exist for sample preparation:

For 2D crystal Cryo-negative staining

Etc...

Questions????

cbmn

Renafobis Oléron 2016