Réseau National de Formation en Biologie Structurale Intégrative

ReNaFobis 2016

NMR developpments

Bruno Kieffer (kieffer@igbmc.fr) Groupe de RMN biologique ESBS-IGBMC Illkirch

cole supérieure de biotechnologi

UNIVERSITÉ DE STRASBOURG

NMR developments: a tribute to R.R. ERNST

ReNaFobis 2016

Why just NMR ?

- « Because there is hardly another technique that is so informative for so many different types of applications, and because there is no other technique that provides so much fun ».

> **Richard Robert** ERNST

Three States of living matter

Few introductory concepts about NMR

• NMR is a very very low energy spectroscopy

ReNaFobis 2016

Low energy means...

• Intrinsically weak signal due to low population difference

ReNaFobis 2016

Biological NMR: 35 Years of innovations

Low energy means...

- Very long live time of excited state...
- Subsequently an extreme precision on measurements

Example: Deuterium isotopic shifts

Nb of structures determined by NMR in the PDB

PUBMED publications with NMR in the title

2005-2015 NMR: a tool for integrative structural biology

- Study of Intrinsically Disordered Proteins (IDP)
- Study of Molecular Recognition fundamental mechanisms
- Description of Protein and Nucleic Acid excited states
- Visualizing Large complexe's motions
- Monitoring protein's states within the cell

Jan 2013

The Quiet Renaissance of Protein Nuclear Magnetic Resonance

Paul J. Barrett,[†] Jiang Chen,[†] Min-Kyu Cho,[†] Ji-Hun Kim,[†] Zhenwei Lu,[†] Sijo Mathew,[†] Dungeng Peng,[†] Yuanli Song,[†] Wade D. Van Horn,^{†,§} Tiandi Zhuang,[‡] Frank D. Sönnichsen,[∥] and Charles R. Sanders^{*,†}

[†]Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, United States

³Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States [§]Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States Institute for Organic Chemistry, Christian-Albrechts University of Kiel, D-24118 Kiel, Germany

ABSTRACT: From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 1980s.

Current Topi

pubs.acs.org/biochemistry

Recent methodological developments aim at: - solving resolution problem (size limitation) - sensitivity issues

GB1 (~6 kDa)

ReNaFobis 2016

Dimère LBD RXR (~50 kDa)

ReNaFobis 2016

NMR Methodological Innovations

ReNaFobis 2016

NMR Methodological Innovations

NMR Methodological Innovations

NMR Methodological Innovations

NMR Methodological Innovations

ReNaFobis 2016

1. Recent advance in NMR instruments

NMR: co-evolution of biochemical and spectroscopic methods

ReNaFobis 2016

Recent advance in NMR instruments

The Signal/Noise ratio depends on the applied magnetic field

Recent advance in NMR instruments

Compactness of magnets

ReNaFobis 2016

Evolution of Detection Sensitivity

Quantity of measured protein

Cryoprobes

 Provided that the sample is properly conditionned (tubing) the sensitivity can be optimized (mass of matter needed for the experiment)

 $S/N \propto Q\eta M_O$

Hoult law:

Q : facteur de qualitéη : facteur de remplissage

12.9

L11.9

-V12_0

0.4

0.0

0.4

CD 110.0

Q C L15 0

ReNaFobis 2016

Bio-drugs quality control by NMR

2. Recent advance in NMR methodologies

ReNaFobis 2016

Taking advantage of relaxation properties

- 2. Longitudinal relaxation:
 - Accelerate the return to thermal equilibriumstate before the next acquisition => SOFAST

Taking advantage of relaxation properties

- 1. Transverse relaxation
 - Exploit cross-correlation phenomenons between several relaxation mechanisms (CSA-DD) => TROSY

Taking advantage of relaxation properties

Working on sampling methods

- The use of FFT imposes a linear sampling
- Alternate methods (NUS) are currently beeing developped allowing considerable gain of time

Ultra-Fast NMR

 Principle: Use field gradients to establish a relationship between space and time domain

=> A 2D can be recorded in few seconds (provided that you have enough S/N) (L. Friedman et al. PNAS 2002)

(2) (3) gradient-assisted aquisition

Sampling 3D spaces

Random sampling

ReNaFobis 2016

Application: Real-time follow-up of a folding process

Mi-Kyung Lee^{k1}, Maayan Gal^{h1}, Lucio Frydman^{h2}, and Gabriele Varani^{k2} PNAS 2010

3. Sample preparation

Standard approach: Uniform ¹⁵N-¹³C associated to multi-dimensional triple resonance spectroscopy

Sample preparation

- Isotopic Labelling:
 - Spectral Simplification (reduction of the number of frequencies present in the spectrum)
 - Reduce the relaxation sources (Partial deuteriation)
- Introduction of additional probes
 - Paramagnetic Relaxation
 - Fluorine NMR
- The complexity of observed medium
 - Use of anisotropic media (Residual Dipolar Couplings)
 - In-cell NMR

ReNaFobis 2016

Development of specific methods for Intrinsically disordered proteins (IDP)

¹³C, ¹⁵N detection

Solution NMR Spectroscopy Specific protonation of methyl groups

Introducing spin label (PRE)

- The electronic spin induces an efficient relaxation of nuclear spins at long range distances
- This effect can be used to get structural restraints in large complexes
- This method prove to be invaluable to detect transient molecular events (encounter complexes, excited states, protin sliding on DNA,...)

Solution NMR of supramolecular complexes: providing new insights into function

Remco Sprangers, Algirdas Velyvis & Lewis E Kay

Nature Methods 2007

α-Keto isovaleric acid

α-Keto butyric acid

ReNaFobis 2016

Application to disordered proteins (Tau)

Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, et al. (2009) Structural Polymorphism of 441-Residue Tau at Single Residue Resolution. PLoS Biol 7(2): e1000034. doi:10.1371/journal.pbio.1000034 http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1000034

ReNaFobis 2016

RNA spin labelling

Expression of ¹³C, ¹⁵N labelling proteins in eukaryotic cells

In-cell NMR

Three States of living matter

