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Plan

 Measurement and modelling: what do we mean by “model” ?

 Thermodynamics aspects of proteins

 Modelling protein structures from NMR data

 Modelling protein’s dynamics
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General Path for Scientific Work

Phenomenon/system

Measure
Data

Interpretation
Computations Model

From Delsuc MA 
(Ecole de Physique des Houches 2015)
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Model can be anything

 Analogic model 
exemple of Galileo ramp

 Analytical equation

most of the physic we learn / we teach

 Image
microscopy 

 Computer program 
molecular modeling
any kind of program modeling the system 
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Model depends on chosen experimental 
approach

Model A Model B

From Lazebnik BIOCHEMISTRY (Moscow) Vol. 69 No. 12 2004 ReNaFobis 2016

From Data to Models: Two Opposite Ways

Top-Down Bottom-Up

From Very Large sets of Data
On Complex Systems

To Simple Predictive Models

From Sparse and accurate
Data on Simple systems 

To Model Complex Systems
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Model depends on chosen experimental 
approach

Another way to say the same thing (Bayes theorem):

P(model / data)  P(model )
P(data)

P(data / model )
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Models are also involved in Measurements

 A measure results from a signal which has been processed

Ymeas  FT (S)err

N P

noisesignalmeasure

Transfer function

Number of parameters
to define the transfer function

Number of points
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Models are also involved in Measurements

 N > P : Modelling the Phenomenon 

– Fitting the parameters onto the data
– Exp: ITC

 N = P : Modelling the Signal

– Transforms (exp: Fourier Transform)

 N < P : Modelling the Knowledge

– Reconstruction of data
– Exp: Structure determination by NMR

Example of N>P : ITC Measurement

• Isothermal Titration Calorimetry

dqi

dt nL + R nLR 
Ka

• Fit with parameters: n, Ka, ΔHapp

∆H∆G -T∆S

enthalpy entropy
Gibbs
Free 

energy
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Characteristic time of an observation

 All observation method is associated with a characteristic time

– Interaction light-matter : very short times
exp: X-FEL 10-14 s - 10-12 s

– Measure of heat transfer : 10-1 s

 During the observation characteristic time, we measure an 
average:

– If the molecules are static: 

– If the molecules are moving:

X  xi space

X  xi time
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Ergodicity

 A system is ergodic when time and space averages gave 
identical results:

 Methods that are not sensitive (NMR, ITC):

 Integrating information from different biophysical methods 
requires the knowledge of their characteristic times

xi space
 xi time

X  x
time space
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Pure time average methods

 smFRET provides pure time average observations

From Nat Methods. 2008 Jun; 5(6): 507–516. 


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Example of a non-ergodic system

 ITC measurement of the heat release upon addition of a ligand 
(TPP) to a riboswitch RNA (from Bec et al. JACS 2013 135 pp9743-52)
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Example of a non-ergodic system

 ITC measurement of the heat release upon addition of a ligand 
(TPP) to a riboswitch RNA (from Bec et al. JACS 2013 135 pp9743-52)
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Modelling a complex polymer

It is all about 
thermodynamics and kinetics

ReNaFobis 2016

The internal energy of a protein defines its 
behaviour

 This energy results from a fine balance between two large 
reservoirs of energy: ∆H and –T∆S

From Pfeil, Privalov Biophys. Chem 4, p41 (1976) Lysozyme at pH 7
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The internal energy of a protein defines its 
behaviour

 This energy results from a fine balance between two large 
reservoirs of energy: ∆H and –T∆S

From Pfeil, Privalov Biophys. Chem 4, p41 (1976) Lysozyme at pH 7 ReNaFobis 2016

Single Structure representation emphasizes 
the enthalpic contributions

PDB 3I5R Batra-Safferling et al. 2010 JBC 391 p33

∆G° =  ∆H° - T∆S°

First NMR structure BUSI II Wühtrich et al. 1982 
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What is entropy ?

T∆Srot,trans

Entropy is a measure of the degrees of freedom for the 
system defined by the protein and the solvent 

Organization of the water shell

Rotational and translational
degree of freedom

Conformational entropy

T∆Ssol

T∆Sconf
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Disorder is conformational entropy

The conformational Entropy is defined by the number of 
states (conformations) accessible by the protein.

Number of microstates of the system

S kB ln



Disordered regions of proteins provides a fine reservoir of 
energy to fine-tune their function
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The energy landscape of a protein system

E. Lescop Renafobis 2015

☞ The most stable (populated) conformation lies at the global minimum
☞ Local minima are “excited” states that are lowly populated
☞ The barriers between minima report on the kinetics of conformational transitions

The free energy landscape is a convenient way to represent structure and dynamics 

of proteins
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Examples of free energy landscapes

E. Lescop Renafobis 2015

A B

pA>B = a.exp(-∆EA>B/kT)
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Examples of free energy landscapes

E. Lescop Renafobis 2015

A B

pA>B = a.exp(-∆EA>B/kT)
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Examples of free energy landscapes
The Ramachandran plot

Ramachandran plot 
provides a 2D 
representation of the local 
energy of a dipeptide 
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Various protein aspects and Free Energy 
landscape

E. Lescop Renafobis 2015

Enzymatic catalysisProtein folding
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An thermodynamic (ensemble) view of 
allostery

From V.J. Hilser and E.B. Thompson JBC 286 p3967 (2011)  
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An thermodynamic (ensemble) view of 
allostery

From V.J. Hilser and E.B. Thompson JBC 286 p3967 (2011)  
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From NMR measurements to protein’s 
models of structures

P. Signac port de La Rochelle 1921
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NMR observables used for protein modelling

 Nuclear Overhauser Enhancement (NOE)

irradiation
sélective

temps après
irradiation
sélective

Spectres différences
irradié - normal

S I
ISR1

S R1
I
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Quantification of NOEs

 The cross-relaxation rate allows interproton distances to be 
measured

 IS  A 6c

1 4 2c
2 c











1
rIS

6

Distance 
measurement

Dynamics of the
inter-nuclear vector

c: rotational correlation time
: spectrometer frequency
: dipolar constant

-H
H-

H- d<5Å

The NOESY
A tool to measure NOE
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Effect of conformational averaging on NOE 
and coupling constants
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Handling ambiguous NOE information

9.52 ppm

4.34 ppm
B

C

A B

C

9.52 ppm

4.34 ppm

4.34 ppm?

d  1
d6

ii1

n











1/6

Ambiguous distances are grouped within d-

6 averages

The redondancy of the data will
enable a proper convergence and the
distance assignment
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Integration of dihedral angle constraints
in the model

The dependance of backbone nuclei from local structure is exploited to
get  and  dihedral angles using databases approaches

brin 

hélice 

aléatoire

ReNaFobis 2016

TALOS

Torsion Angle Likelihood Obtained from Shift and sequence similarity
F. Delaglio & A. Bax J.Biol.NMR 13 p289

Input: Chemical shifts  (13C, 13C, 13C', 15N , 1H

L A T

Recherche: Based on a similarity score for tripepeptides (frequencies
and sequence)

I A T

..... .....

..... .....

Query 

Sequence from the database
- Good quality 3D structres (2.2 Å)
- Reliable assignments

Résultat: Return the best   et  values for the central residue (i)

i i+1i-1
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CS-ROSETTA

39

Consistent blind protein structure generation from NMR chemical shift data 
Yang Shen, Oliver Lange, Frank Delaglio, et al.
Proc Natl Acad Sci USA, (2008) 105, 4685-4690

Sélection of rigid fragments based on chemical shifts calculations

Assembly of fragments into a full 3D model using ROSETTA 
(Monte-Carlo)

Addition of a additional term in the ROSETTA target function to 
take into account the chemical shift agreement between
calculated and measured chemical shifts.

Based on chemical shift calculations from a 3D model using the 
SPARTA program
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CS-ROSETTA

40



ReNaFobis 2016

Structure determination from NMR data is a 
non-linear inverse problem:

Dihedral
angles

NOEs
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General procedure for structure 
determination

NMR ObservablesModel

D = Ymeas –Ycalc)
i

Back-calculated
values

Ymeas
i

Measured valuesParameters of the model

[x, y, z]i
[]i
N (number of states)

c (dynamics)

Distance measurement

i i

Global Optimisation Process

2
A priori information

Ycalc
i
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General procedure for structure 
determination

 Optimisation algorithm : Simulated annealing

– Model: a set of atoms linked by interaction potentials

– Atoms dynamics is simulated using Newton equations of motion

– High temperature allows a random exploration of a large 
conformational space

– Cooling down the system leads to a minimal value of the interaction 
energies
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The target function: the potential energy of 
the molecular system

angleEangle

bondEbond

dihedrEdihedr

vdwEvdw

coulombEcoulomb

Ymeas –Ycalc)
i

i i 2
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Molecular dynamics simulations

En : Potential energies of the system
ri : Atom coordinates
mi : Atom mass

The temperature of the system is defined from the atom velocities

mi

d2ri

dt 2  Fn
n
  

dEn

dri

 
dETotal

drin


From a starting conformation, we compute the following one (a dt time step
after) by numerical integration of the equation of motion

A simulated annealing protocol

cooling

T=1000K

T=300K

Elié

EVDW

ENOE

rayon VDW: 0.9 

rayon VDW: 0.7 

assymptote

0.1 1

Iterative interpretation of ambiguous distances 

i = 1

i = 2

i = 8

Initial fold

NOEs assignment,
Artefact suppression
Medium ambiguity accepted

...

Logiciels
ARIA, UNIO

Rieping W., Habeck M., Bardiaux B., Bernard A., Malliavin T.E., Nilges M. 
(2007) ARIA2: automated NOE assignment and data integration in NMR 
structure calculation. Bioinformatics 23:381-382.

Volk, J.; Herrmann, T.; Wüthrich, K. J. Biomol.NMR. 2008, 41, 127-138..

Analysis of the resulting structures

RMSD 
di

2
i
n

Correct geometry is assessed 
by Ramachandran plot 



HADDOCK

Domingez C, Boelens R, Bonvin A, J. Am. Chem. Soc. 125, 1731-1737 (2003).

Use of Ambiguous Interaction Restraints for soft 
docking

Conclusions

• Integration of data requires a careful thought about 
the measurement and modelling processes

• Interesting and biologically relevant features may be 
hidden by the use of “over-simplified” models of 
proteins

• NMR provides a unique way to bridge thermodynamics 
and dynamics

• Complexes motions are captured using single molecule 
approaches


