Application fields of solid-state NMR (ssNMR)

Introduction to solid-state NMR on biomolecules

Renafobis Oleron 2016 May 25th 2016

Marie Renault

Outline

1.Anisotropic interactions

2.High-resolution ssNMR

- Magic Angle Spinning (MAS) & Decoupling
- Cross-Polarization
- Recoupling techniques
- 3. Protein structure determination
 - Basics
 - Multidimensional ssNMR
 - Resonance assignment
 - Structural restraints
- 4. Applications

Anisotropic interactions

Anisotropic interactions

Second-rank tensors (3 x 3 Matrices)

Chemical Shift Anisotropy

- The electron distribution surrounding nuclei is inherently asymetric

Chemical Shift

- The external magnetic field B₀ induces currents in the electron clouds in the molecule.
- The circulating molecular currents in turn generate a magnetic field (called the induced field B_{induced}):

Chemical Shift Anisotropy parameters

 By suitable choice of the coordinate system (PAS), the CSA Tensor only contains the diagonal elements

 $\sigma_{\underline{\alpha}_{y}} \rightarrow \sigma_{\underline{\beta}_{AS}} = \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & \sigma_{22} & 0 \\ 0 & 0 & \sigma_{22} \end{pmatrix} \quad \text{with } \sigma_{11} + \sigma_{22} + \sigma_{33} \neq 0$ and $\sigma_{11} \leq \sigma_{22} \leq \sigma_{33}$

Isotropic chemical shielding $\sigma_{iso} = 1/3 (\sigma_{11} + \sigma_{22} + \sigma_{33}) / 3$

Anisotropy (ppm) $\delta \quad \delta_{aniso} = \sigma_{33} - \sigma_{iso}$

Asymmetry $\eta_{asym} = (\sigma_{22} - \sigma_{11}) / \delta_{aniso}$

Chemical Shift Anisotropy

 The resonance frequency is directly correlated with the orientation of the CSA tensor with respect to B₀

CSA for a single crystal

Chemical Shift Anisotropy

• Powder lineshapes are characteristic for the magnitude of the anisotropy (δ_{aniso}) and asymmetry (η_{asym}) of the CSA tensor

CSA for a single crystal

Figure 2. Phosphorus-31 CP NMR spectra of a single crystal of TMPS for rotations of the crystal holder about its *X*, *Y*, and *Z* axes, acquired at 4.7 T.

CSA characteristic for various lipid phases

Chemical Shift Anisotropy

- Chemical shift (CS) depends on the local electronic environment
- CS can be calculated with quantum-mechanical methods and used to obtain structural information
- CS measurement are used to derive dihedral angles in protein backbone (Ca, C' atoms). The ¹³C CS are characteristic of protein secondary structures

Chemical Shift Anisotropy

- Lyophilized sample
- Microcrystalline powder
- Microcrystalline powder (different protocols)

Dipolar coupling

= Interaction of one nuclear spin with a magnetic field generated by another nuclear spin, and vice versa

Dipolar couplings

Dipolar couplings

Interaction energy between 2 magnetic (dipole) moments when both are aligned with B_0 :

$$E = \frac{\mu_0}{4\pi} \frac{1}{r_{AB}^3} \mu_A \mu_B (1 - 3\cos^2\beta)$$

Dipolar couplings depend on : - orientation of the internuclear vector relative to the static field B₀

- internuclear distance (1/ r³)
- gyromagnetic ratios of the 2 involved nuclei

Dipolar interaction tensor

$$D = \frac{\mu_0}{4\pi} \frac{\gamma_1 \gamma_2 \hbar}{r_{12}^3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad \begin{array}{c} - \text{Second-rank tensor} \\ - \text{Axially symmetric} \\ - \text{Traceless} \\ \end{array}$$

- In solution, dipolar couplings are averaged to zero due to rapid (rotational) motion of the molecules
- In solids, dipolar couplings give rise to line splittings which can easily exceed 10 kHz of magnitude.

Dipolar couplings

- Dipolar couplings are proportional to the internuclear distance : dipolar splittings in spectra of oriented or powder samples provide a high-precision measure of internuclear distances (CC, NC distances)
- Heteronuclear Dipolar couplings (~10-30 kHz) are used to obtain orientational restraints i.e. tilt of transmembrane helices in oriented bilayers (PISA wheels)
- Homonuclear ¹H-¹H dipolar couplings (up to 120 kHz) homogeneously broaden the NMR signals. Protondetection in solids is difficult.

Motional averaging of anisotropic interactions

 Anisotropic interactions provide a rich source of information about amplitude motions in biomolecules

- They can possibly reveal details of the motions, such as asymmetric motions, as long as the process takes place on time scales shorter than the inverse of the anisotropic interaction strength e.g. for HN dipolar couplings (~10 kHz), motion amplitudes faster than 10 μ s can be assessed
- The amplitude of the averaging process is reflected in the scaling factor of the anisotropic interactions and can be directly obtained from the lineshape analysis of ssNMR spectra

information about dynamics on different time scales

ssNMR spectrum (spin 1/2)

- Liquid: anisotropic interactions are averaged out on the NMR time scale. Only isotropic interactions are observable i.e. isotropic CS and scalar couplings
- Solid: NMR spectrum lineshape reflect the weighted sum of all orientations

Additional structural information

ssNMR spectrum (spin 1/2)

NMR interactions

Magic Angle Spinning (MAS)

Andrew and Lowe (1954)

- MAS relates to sample spinning about an axis that is inclined by an angle θ to the static magnetic field B0

- If θ = 54.74° ('magic angle'), second-rank tensor interactions can be averaged out

Angular dependence of second-rank tensors is given by the second-order legendre polynomial $(3\cos^2\theta-1)/2$

> (3cos²θ-1)/2=0 if θ=54.74°

Magic Angle Spinning (MAS)

In MAS, the sample is placed in a cylindrical rotor which is rapidly spun about an axis that is tilted by 54.74 degrees away from the direction of the static B0.

Magic Angle Spinning (MAS)

- MAS frequency > magnitude of the interaction : isotropic value

- MAS frequency < magnitude of the interaction : the powder spectrum is split into rotational sidebands

Cross Polarization (CP)

- the mixing time (or contact time)
- the magnitude of heteronuclear dipolar interactions (i.e. distance between the nuclei, dynamics)

Cross Polarization (CP)

= Polarization transfer from abundant spins such as ¹H or ¹⁹F to dilute spins such as ¹³C or ¹⁵N using through-space dipolar couplings. The overall effect is to enhance S/N.

1. Signal enhancement factor (potentially) = $\mathbb{Q}/\mathbb{Q}_{s}$

2. Shorter recycling delay (T_1 ¹H << T_1 ¹³C)

Cross Polarization (CP)

 ^{1}H

molecular mobility, CP can become ineffective

Recoupling techniques

Recoupling techniques utilize the constructive interference between rotations in real space (MAS) and rotations in spin space (RF irradiation). In this way, it is possible to avoid the averaging of anisotropic interactions by MAS

- Several classes of recoupling experiments :

- * without RF-irradiation
- * using discrete pulses
- * using CW irradiation
- * using phase-modulated RF irradiation

Obtaining structural restraints Transfer the magnetization between nuclei

2D (¹³C,¹³C)-PDSD spectrum of Ubiquitin (mixing = 200 ms)

Recoupling techniques without RF irrdiation

1. Proton-Driven Spin Diffusion (PDSD)

= Dipolar-mediated polarization transfer under MAS (residual homonuclear ¹H-¹H dipolar couplings)

Typical mixing times (protonated organic solids) :

- Direct bond transfer ~ 10 ms
- Long-range transfer ~ 100-500 ms

Recoupling techniques without RF irrdiation

2. Rotational Resonance (R²)

- = "Rotor-driven" spin-diffusion
- Partial reintroduction of the homonuclear dipolar coupling when R² condition is fulfilled (line-broadening)
- Use as a polarization transfer method (PDSD under weak coupling conditions)

MAS frequency sets at $\omega_R = \omega_1(CO) - \omega_1(C\alpha)$

Recoupling techniques with discrete RF-pulses

= Re-introduction of selected anisotropic spin interactions by applying rotor-synchronized RF pulses

Discrete pulses prevent full averaging of the dipolar coupling under MAS !

Recoupling techniques with discrete RF-pulses

REDOR experiment

measurement of ¹³C, ¹⁵N heteronuclear dipolar couplings

Relative signal intensity change against mixing time for one-bond dipolar coupling

Structure determination protocol

Protein structure determination and dynamics

Resonance assignment

- Protein sequence known
- Chemical structure known

Resonance assignment

Characteristic ¹⁵N-¹³C correlations

Resonance assignment

Averaged backbone and sidechain ¹³C chemical shifts

Multidimensional ssNMR

- Evolution period is systematically incremented and a collection of FIDs S(t₁,t₂) is recorded
- The 2D spectrum $S(v_1, v_2)$ is obtained by 2D FT of the $S(t_1, t_2)$
- Phase cycling of the preparation and mixing units selects the desired coherence transfer pathway

Multidimensional ssNMR

Fig.: Transformation properties of CS and dipolar/scalar mixing.

Sequential assignment of ¹⁵N-¹³C-labeled proteins

2. Linking the spin-systems by the identification of sequential correlations

- ¹³C-¹³C PDSD/DARR (long mixing time)
- ¹⁵N-¹³C NCACX (long mixing time)
- ¹⁵N-¹³C NCOCX (short mixing time)
- ¹⁵N-¹³C CANCO/CANCOCX

Transfers :	20 NCO	ар иссорах за неосах	Transfers :
1. CP HN (broadband) 2. SPECIFIC-CP NC 3. Mixing < 60 ms 3. Mixing > 160 ms	Ê <u>7</u> 000 (F2)		1. CP HN 2. SPECIF 3. bibling 3. bibling

Sequential assignment of ¹⁵N-¹³C-labeled proteins

3D NCC correlation spectra

C C Antranes, S Broker, X Statel H Heen, H S Young, M Baldue, ... Am Cham. Soc. 2005, 177, 1766-17674

3D models

Secondary structure

Tensor correlation experiments

- Tensor correlations experiments can be used to determine the relative orientation of two anisotropic interactions
- For example, dihedral angles can be determined by :
 - Dipolar coupling tensor correlation
 - CSA / CSA tensor correlation
 - CSA / Dipolar tensor correlation

Secondary structure

¹³C and ¹⁵N backbone CS predictions from high-res 3D structures (ShiftX, ShiftX2,Sparta)

Molecule	Kind	Asgn.	SSNMR source, year	Prediction source (PDB code,
		Res.	(BMRB entry)	method)
APTI	olobular	9	McDarmott at al 12% 2000	Worksmar et al DAI (GPT) X.
0. 11	groom.		nepenne en pay nee	(3v)
Crh	globular (dimer)	63	Bookmann et al. [25], 2003	Juy et al. [26] (1MU4_A, X-ray)
GB1	globular	54	Franks et al. [27], 2005	Franks et al. [28] (2GI9, X-ray)
KcsA	membrane	72	Lange et al. [29], 2006;	Zhou et al. [27] (1K4C, X-ray),
(Kv1.3]	integral		Schneider et al. [30]	variation [29]
KTX	globular	26	Lange et al. [31], 2005 (6341)	Salri et al. [52] (2KTX_1, soln. NMR)
LH2	membrane integral	75	van Gammeren et al. [21]. 2005 (6348)	Papiz et al. [33] (1NKZ_D/E, X-
MPX	membrane	12	Fujiwara et al. [34], 2004 (6214)	Todokoro et al. [35] (2CZP_1, ISNMR)
PLN	membrane	29	Andronesi et al. [16], 2005	Andronesi et al. [16] (ssNMR)
(AFA)	integral			
SH3	globular	53	Pauli et al. [36], 2001	Chevelkov et al. [37] (1U06, X- ay)
SRII	membrane integral	67	Etzkorn et al. [38], 2007	Royant et al. [39] (1H68, X-ray)
TRX	globular	103	Marulanda et al. [40], 2005	Katti et al. [41] (2TRX, X-ray)
TTR	fibril	9	Jaroniec et al. [42], 2004	Jaroniec et al. [42], 2004 (IRVS_1, ssNMR)
UBI	globular	63	Seidel et al. [43], 2005	Comilescu et al. [44] (1D3Z_1, soln. NMR)

Structure determination protocol

¹³C/¹⁵N distance restraints

Measurement of internuclear distances by reintroducing the dipole-dipole coupling otherwise averaged out by MAS

Accurate distances but time-consuming !!

1. A single internuclear distance at a time :

- Specifically labeled spin-pair samples
- Frequency-selective recoupling methods

Distance restraints

PDSD is less sensitive to dipolar truncation

Protein Structure Determination from ¹³C Spin-Diffusion Solid-State NMR Spectroscopy Theotanis Manolikas,¹ Torsten Herrmann,² and Beat H. Meier^{*,1} Physical Chemistry, ETH Zurich, CH-909 Zurich, Switzerland, and Institute of Molecular Biology and Biophysics, ETH Zurich, CH-909 Zurich, Switzerland

Received October 19, 2007 - E-mail: heme@ethz.ch

Figure 1, 20 "C-"C PD3D sportment of uniformly labeled abajustic recorded at 12 Miz MAS and a mixing time of 100 ms. The duabed lines indicates the region of one-dimensional (10) shices extracted from 2D PDSD spectra 100, 220, and 400 ms mixing time for PI2CD (one field) and L15CB (on the right). Beneath the 1D Silos the overlay of the siloss for 100 and 220 ms is given, indicating molum- and long-range correlations. Intraresidual and segurital contacts are marked with an asterisk.

¹³C-¹⁵N distance restraints

Measurement of internuclear distances by reintroducing the dipole-dipole coupling otherwise averaged out by MAS

"Dipolar truncation effect" : domination of strong dipolar couplings (i.e. short range), prohibiting the measurement of long-range distances

2. Hundreds internuclear distances at a time :

- Uniformly labeled samples
- Broadband recoupling methods

¹³C,¹⁵N distance restraints

Measurement of internuclear distances by reintroducing the dipole-dipole coupling otherwise averaged out by MAS

"Dipolar truncation effect" : domination of strong dipolar couplings (i.e. short range), prohibiting the measurement of long-range distances

2. Hundreds internuclear distances at a time : ___

- Sparse isotope labeling schemes
- or Refined recoupling methods

¹³C,¹⁵N distance restraints

Proton assisting the carbon spins

PAR spectra on microcrystalline CrH protein

De Paepe G, Lewandowski JR, Loquet A, Bockmann A, & Griffin RG (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129(24):24510

¹H-¹H distance restraints

CHHC and NHHC

De novo solid-state NMR 3D structure of KTX

Backbone RMSD (residues 4-38) between solid KTX and KTX in solution:1.9 $\rm \AA$

¹H-¹H distance restraints

Measurement of internuclear distances by reintroducing the dipole-dipole coupling otherwise averaged out by MAS

¹H-¹H distance restraints = most abundant source of interresidue interactions in the range of up to 4 Å !

3. Hundreds ¹H-¹H internuclear distances at a time :

- Uniformly ¹⁵N/¹³C labeled sample
- Indirect detection schemes encoding ¹H-¹H polarization transfer

¹H detection and ultra-fast MAS

¹HN-¹HMe and ¹HN-¹HN distance restraints

4D HSQC-DREAM-HSQC experiment

- 4. Specific ¹H-¹H internuclear distances :
- ¹H back-exchanged (U-¹⁵N/¹³C/²H, ILV)-labeled sample
- Direct detection schemes encoding ¹H-¹H polarization transfer

Other distance restraints

Biomolecular ssNMR : Summary

- No size limitations, crystallinity not mandatory
- Milligram amounts of ¹⁵N-¹³C (²H) labeled protein
- Atom-level structure and dynamics in a (complex) functional environment
- About 70 protein structures (PDB/BMRB), including membrane proteins and fibrils
- Complex Biomolecules : spectral overlap and critical spectroscopic sensitivity

Protein dynamics on various timescales

Schanda, P. & Ernst, M. Progress in Nuclear Magnetic Resonance Spectroscopy 96, 1-46

Resolution and Sensitivity Enhancement

- Refined isotope labeling strategies
- Multidimensional ssNMR experiments
- Efficient decoupling/recoupling schemes
- High static magnetic fields
- Proton-detection
- Fast (40 kHz) and ultra-fast MAS (111 kHz)
- DNP-MAS (400 MHz 800 MHz)