

### Liquid VS solid NMR probe





High-resolution ssNMR methods overcome broadening due to large anisotropic interactions in biosolids

#### Can we turn on and off the anisotropic interactions as we want?



Through **MAS** and **decoupling pulse sequences**, we have turned off the anisotropic interactions (CSA, dipolar coupling).  $\rightarrow$  High spectral resolution

But these interactions could be useful, e.g. to transfer via the dipolar couplings, to collect structural restraints.

→ Can we "switch them on" again ??
→ Recoupling pulse sequences





#### Instrumentation for high-resolution solid-state NMR



#### ssNMR at the interface of structural and cellular biology



- Crystallinity not required, no size limitation
  - □ NMR measurement close to physiological conditions
  - $\Box$  Selectivity for certain rare isotopes (<sup>15</sup>N, <sup>13</sup>C)
  - Sensitivity of the chemical shifts to changes in the environment
  - Advanced ssNMR methods to deal with large spectral complexity and critical sensitivity



#### Membrane protein associated with native membrane

- Overexpression of the protein target
- □ Modification of the endogenous protein background (genome mutation, rifampicin treatment, RNA interferase)
- Use of « targeted » isotope labelling schemes
- □ Cellular preparations of various levels of molecular complexity : Whole cells > cell envelope > outer membrane
- □ <sup>15</sup>N-edited, <sup>13</sup>C-edited NMR, DQ-SQ 2D/3D pulse sequences



### Soluble protein immobilized on peptidoglycan



- □ Purified [U-HN, <sup>2</sup>H, <sup>13</sup>C, <sup>15</sup>N]-protein
- Mix with purified unlabeled PG
- Atomic model of the Protein/PG complex from <sup>1</sup>Hdetected ssNMR experiments at fast MAS frequency
- Protein / PG flexibility from the measurement of NHdipolar couplings derived order parameters of bond motions

Schanda, P. et al. JACS 136, 17852–60 (2014)

Protein-peptidoglycan spectrum 39 kHz MAS, 600 MHz deuterated protein + deuterated PG in H<sub>2</sub>O-based buffer 3D in about 3 days exptl time.

Recombinant MP

**Endogenous lipids** 



#### Proton-detected solid-state NMR at ultra-fast MAS

Advantages of <sup>1</sup>H detection :

- Natural abundance of more than 99.9 %
- High gyromagnetic ratio
- Greater detection sensitivity than <sup>13</sup>C and <sup>15</sup>N



#### Proton-detected solid-state NMR at ultra-fast MAS

Advantages of <sup>1</sup>H detection :

- Natural abundance of more than 99.9 %
- High gyromagnetic ratio
- Greater detection sensitivity than <sup>13</sup>C and <sup>15</sup>N



From Venita Daebel, Bruker BioSpin GmbH, Rheinstetten, Germany

Challenges to reach high resolution :

- Averaging intense dipolar <sup>1</sup>H-<sup>1</sup>H couplings
- <sup>1</sup>H dilution : deuteration
- Increase MAS frequency (up to 111 kHz)



Su Y., et al. Annu. Rev. Biochem, 2015, 84:465–97 <sup>10</sup>

#### Proton-detected solid-state NMR at ultra-fast MAS





1 GHz spectrometer 60 kHz MAS [U-HN, <sup>2</sup>H, <sup>13</sup>C, <sup>15</sup>N]-labeled samples :

Microcrystalline SH3 Microcrystalline β2m Sedimented nucleocapsids M2 channel OmpG

#### **Proton-detected 3D experiments for ssNMR assignments**



•  $(H)CO(CA)NH => (CO_i N_i H_i)$ 

- Intraresidue correlations : • (H)CANH => (CA<sub>i</sub> N<sub>i</sub> H<sub>i</sub>)
- (H)(CA)CB(CA)NH => (CB, N, H)

#### Sequential correlations :

- (H)CONH => (CO<sub>i-1</sub>N<sub>i</sub> H<sub>i</sub>)
- (HCO)CA(CO)NH => (CA<sub>i-1</sub>N<sub>i</sub> H<sub>i</sub>)
- (H)(CA)CB(CACO)NH => (CB<sub>i-1</sub>N<sub>i</sub> H<sub>i</sub>)

#### Magnetization transfers

- Dipolar-based CP <sup>1</sup>H-<sup>13</sup>C; CP <sup>15</sup>N-<sup>13</sup>C; CP 1H-15N
- J-based transfers for <sup>13</sup>C-<sup>13</sup>C due to long <sup>13</sup>C coherence lifetimes at 60 kHz MAS

Barbet-Massin et al., J. Am. Chem. Soc. 2014, 136, 12489-12497

### De Novo 3D Structure Determination from Sub-milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy



Samoson A., Ernst M., Bockman A., Meier B. et al. Angew. Chem. Int. Ed. 2014, 53, 12253-12256





Lowest Energy NMR structures VS X-ray structure

# Sensitivity boost for NMR ?

- Observe nuclear spins in magnetic field (7-23.5 T)
- Interaction with RF field (300-1000 MHz for <sup>1</sup>H spins)
- Relatively low sensitivity due to small polarization at thermal equilibrium





# Sensitivity boost for NMR ?

- Observe nuclear spins in magnetic field (7-23.5 T)
- Interaction with RF field (300-1000 MHz for <sup>1</sup>H spins)
- Relatively low sensitivity due to small polarization at thermal equilibrium

$$P = \frac{\gamma \hbar B0}{2 \text{ k T}} \qquad S/N = \frac{n \gamma_2^5 B 0_2^3}{T}$$

- Increase Sensitivity by pushing spins away from thermal equilibrium = **Hyperpolarization**:
  - Ultra-low temperature
  - Dynamic Nuclear Polarisation (DNP)
  - Optical pumping (e.g. Xenon)
  - Para Hydrogen



## **Dynamic Nuclear Polarization**

- Transfer high electron polarization to nuclei:
  - Irradiate at EPR frequency (GHz)
  - Detect at NMR frequency (MHz)





### **Dynamic Nuclear Polarization**

- Much larger spin polarization is present in the electron spin reservoir
- High potential gain in sensitivity (10-100's+)
- Dramatic reduction in signal averaging time





#### Solid-state DNP-NMR : what it is

- Pioneered by Bob Griffin and Rick Temkin at MIT
- DNP samples are prepared by adding a polarizing agent to a shared solvent or exploiting a native radical on the sample of interest.
- Experiments are performed under MAS conditions at low temperature, 100-170 K, and with continuous microwave irradiation
- Transfer the electron polarization to the nuclear spins by irradiating the electrons with high frequency microwaves !
- Polarize <sup>1</sup>H spins followed by cross polarization to <sup>13</sup>C, <sup>15</sup>N, <sup>31</sup>F
- In-situ polarization enhancement each and every scan!
- Compatible with biological solids





Solid-state NMR DNP system





Photograph of 527 GHz DNP Spectrometer at the University of Utrecht, The Netherlands. Left to right: 800 WB NMR magnet, microwave transmission line, second-harmonic cryogen-free gyrotron tube and magnet, control system.

18

## DNP-enhanced CP MAS on (U-<sup>13</sup>C)-Proline



#### DNP-Enhanced <sup>15</sup>N MAS Spectra ɛ-<sup>15</sup>N -Lys labeled bR





SANS DNP, 317 MHz 5 mm rotor, 160 uL 25856 scans, 14.4 hours

With DNP, 211 MHz 4 mm rotor, 40 uL, T=90 K 1280 scans, 1 hour

M. Rosay, et. al. JACS (2003)

### Current applications on biological samples

|                         |       |                 |                   | $B_0$ ( <sup>1</sup> H |
|-------------------------|-------|-----------------|-------------------|------------------------|
| Biosystem               | 8     | Temperature (K) | Radical (mM)      | frequency)             |
| GNNQQNY                 | 20    | 100             | TOTAPOL (35)      | 400 MHz                |
| TTR105-115              | 12    | 100             | TOTAPOL (10)      | 400 MHz                |
| PI3-SH3                 | 30    | 100             | TOTAPOL (10)      | 400 MHz                |
| Αβ1-40                  | 20    | 96              | TOTAPOL (30)      | 400 MHz                |
| Peptidoglycan           | 8.8   | 100             | TOTAPOL (~80)     | 400 MHz                |
| hΦ17W                   | 18    | 100             | bTbK <sup>a</sup> | 400 MHz                |
| M218-60                 | 2.5   | 100             | TOTAPOL (4)       | 600 MHz                |
| Arabidopsis cell wall   | 27    | 100             | TOTAPOL (35)      | 600 MHz                |
| Mistic                  | 20-30 | 100             | TOTAPOL (30-40)   | 400 MHz                |
| Whole cells             | 10    | 100             | TOTAPOL (60)      | 400 MHz                |
| Cell envelopes          | 26    | 100             | TOTAPOL (60)      | 400 MHz                |
| Ribosome                | 25    | 100             | TOTAPOL (20)      | 400 MHz                |
| Cell wall               | 20-40 | 100             | TOTAPOL (1)       | 400 MHz                |
| Escherichia coli SecYEG | 32    | 100             | TOTAPOL (20)      | 393 MHz                |
| nAChR-bound NTII        | 26    | 100             | TOTAPOL (50)      | 400 MHz                |
| Apoferritin             | 20    | 90              | TOTAPOL (1)       | 212 MHz                |
| T2SS needles            | 30    | 104             | TOTAPOL (28)      | 600 MHz                |
| bR                      | 75    | 83              | AMUPol (40)       | 380 MHz                |

#### Limitations and future challenges of DNP-MAS

Line broadening occasionally encountered :

- Temperature regime from 80 to 110 K
- Proximity of paramagnetic species

#### Future directions

- New methods for cryoprotection (rapid freezing)
- Sparse labelling (glycerol, glucose, acetate)
- DNP at > 800 MHz
- Increased MAS frequencies
- Pulsed DNP

23

 $\begin{array}{l} 2D \ ^{13}C \ ^{13}C \ correlation \ spectrum \\ MAS \sim 11 \ kHz, \ T= 100 \ K, \ 600 \ MHz \\ (U^{-13}C, \ ^{15}N) \ -labeled \ MXIH \ needles \\ TOTAPOL \ 28 \ mM \\ DNP \ enhancement \sim \ 30 \\ \ ^{13}C \ linewidth \ \sim 1 \ ppm \end{array}$ 



Fricke P, Demers JP, Becker S, Lange A. 2014. ChemPhysChem 15:57–60

