Direct detection systems for TEM : K2 Summit Camera & GIF Quantum LS Energy Filter

What should we expect from cryo-EM?

Vincent Richard GATAN

ĠΑΙ

RéNaFoBIS, Oléron 2016

Influence of detectors on published data (EMDB, 20. January 2015)

No. of yearly new Publications and 3D Structures

Detectors Designed for Structural Biology

K2 Summit[®]

- Electron counting camera
- K2 direct detection sensor
- Unmatched performance
- Highest contrast for thin specimens
- Gatan Latitude support
- SerialEM/Leginion support

GIF Quantum[®] LS

- Electron counting energy filter
- K2 direct detection sensor
- Unmatched performance
- Highest contrast for thick and thin specimens
- Gatan Latitude support
- SerialEM/Leginon support
- FEI embedding supported

History of detection devices

Fluorescence

Screen

Film

TV rate camerasDirect ElectronDetector

Image Inter

gatar

Later CCD and CMOS

What is direct detection?

Traditional fiber-coupled camera (CCD or CMOS)

Scintillator electron to light conversion

Fiber optic light image transfer

CCD or CMOS sensor light to charge conversion

Direct detection camera

DQE limiting factors: low-Z Si sensor

- Electron scattering in high-Z scintillator
- Electron back-scattering from fiber optic
- Scattering of light in fiber optic
- Distortions from fiber optic
- Electronic read noise

What is electron counting?

Single 2.5 ms frame using conventional charge read-out

Same frame after counting

Counting removes the variability from scattering, rejects the electronic read-noise, and restores the DQE

So why doesn't every camera allow counting?

Typical dose rate of 10 e⁻/pix/s

40 fps: events overlap and cannot be resolved

GAT

400 fps: events are resolved

It takes 400 fps to resolve electrons at a dose rate of 10 e⁻/pix/s

Improved DQE at high frequency

K2 Base: charge integration Improved DQE at high frequency

3. Charge collects in each pixel

1. Electron enters

detector

^{2.} Signal is scattered

Improved DQE at high and low frequency

K2 Summit: counting Improved DQE at low and high frequency

•	

1. Electron enters detector

2. Signal is scattered

3. Charge collects in each pixel

4. Events are reduced to the highest charge pixels

K2 Summit: super-resolution Improved DQE at low and high frequency 7680 x 7424 pix

•	

1. Electron enters detector

2. Signal is scattered

- 3. Charge collects in 4 each pixel loca

4. Events are localized with subpixel accuracy

The impact of DQE: why is it important?

Detective quantum efficiency

Input image: Low contrast picture of Siméon Denis Poisson **Output Image:** Image after recording with a camera with uniform 33% DQE

Image signal detail is lost in the noise added by the camera $DQE(s) = \frac{SNR^2_{out}(s)}{SNR^2_{in}(s)} = \frac{MTF(s)}{NTF(s)}$

Cryo: low contrast samples require highest possible SNR output Camera is most critical element

What is Dose Fractionation ? 7 sec exposure time without drift correction

- Dose fractionation is the distribution of a total electron dose over a series of sub-frames
- 21 x 0.33 sec = 7 sec

GATA

Dose Fractionation

- Dose fractionation is the distribution of a total electron dose over a series of sub-frames
- 21 x 0.33 sec = 7 sec

7 sec exposure time with drift correction

Dose Fractionation

 Dose fractionation is the distribution of a total electron dose over a series of sub-frames

without sub-frame drift correction

with sub-frame drift correction

Drift correction: Cryo-TEM example of Ribosome

GAT/

Drift correction: Cryo-TEM example of Ribosome

GAT/

Benefits coming from K2 :

- Direct detection
- Counting

 \odot

 (\cdot)

 \odot

- SuperResolution
- Dose fractionation
- Drift correction

K2 Summit/K2 Quantum: Powerful Tools for High Impact Science

2.2 Å β-galactosidase 465 kDa Bartesaghi et al., Science 2015 NIH K2 Quantum

Frealign Manual Imaging 2.6 Å Rotavirus 126 MDa Grant/Grigorieff (EMDB-6272) Janelia Farms K2 Summit Frealign Leginon 2.8 Å Proteasome 700 kDa Campbell et al. eLife 2015 NRAMM K2 Summit Relion Leginon

2.9 Å Anthrax Pore 425 kDa Jiang et al., Nature 2015 Scripps Research Inst. K2 Summit Frealign Leginon

3.4 Å TRPV1 380 kDa Liao et al., Nature 2013 UCSF K2 Summit Relion Manual/UCSF Image 4.5 Å γ-secretase 170 kDa Lu et. al., Nature 2014 MRC-LMB/Tsinghua K2 Quantum Relion Manual Imaging

High Resolution Helps with Drug Development

Cryo Electron Microscopy (Cryo-EM) Shows Impact of Drug Binding on Protein

- TRPV1 is an important drug target: chronic pain
- AstraZeneca, Bayer, Eli Lilly, Janssen, Johnson&Johnson, Novartis all have drugs targeting TRPV in clinical trials

2.8 Å Resolution Reconstruction of the *Thermoplasma acidophilum* 20 S Proteasome using Cryo-electron Microscopy

- 2.8 Å resolution
- Side chain conformations
- Water molecules and hydrogen bonds

Highest Resolution Structure – GIF Quantum LS

Sciencexpress

2.2 Å resolution cryo-EM structure of β galactosidase in complex with a cellpermeant inhibitor

Alberto Bartesaghi,^{1*} Alan Merk,^{1*} Soojay Banerjee,¹ Doreen Matthies,¹ Xiongwu Wu,² Jacqueline L. S. Milne,¹ Sriram Subramaniam¹

GATA

Merci pour votre attention !!

1

GAI