

« Size » and lifetime of the signal T2

exp(-R, 2.4) Sensitivity $\alpha \prod \sin(\pi JA) \prod \cos(\pi JA)$

• MW < 5 kDa Homonuclear assignment (TOCSY, NOESY

• 5 kDa < MW < 10 kDa Heteronuclear assignment: 15N

• 10 kDa < MW < 20 kDa Heteronuclear triple resonance assignment : ¹⁵N, ¹³C

• 20 kDa < MW Heteronuclear triple resonance assignment : ¹⁵N, ¹³C, ²H (*E.coli* BL21+++)

Nathalie Sibille - RéNaFoBis 2016

The signal loss is exponential while the size of the molecule increases

 $\gamma_{\rm H}/\gamma_{\rm D}$ = 6.5.... Relaxation gain !!!!

Nathalie Sibille - RéNaFoBis 2016

Towards high molecular weight complexes

Special interest of methyls :

- o well dispersed throughout the primary structures and localized in hydrophobic core
- favorable transversal relaxation property of CH3 (sensitivity gains) 0
- high sensitivity due to the presence of 3 equivalent protons 0

Attribution des méthyls du protéasome archaebactérien (20S CP, 670kDa) → Mise en évidence de mouvements concertés

Flemco Sprangers, Algirdas Velyvis & Lewis E Kay, Nat. Methods 2007 (Sept), 4, 697

SAXS, Hydrodynamic data, EPR

 \diamond The ensemble is underdetermined Cross-validation or simplification of the structural model are required

 \diamond Structural content of the ensemble depends on the information (experimental data) introduced...

> Residue-specific data ► local conformation Overall data • size and shape

Biophysical characterization: CD, FTIR, FRET, hydrodynamics

Partial Information

- Small-Angle X-ray Scattering (SAXS)/Small-Angle neutron Scattering (SANS) Averaged Intensity profiles... Qualitative Interpretation of averaged R_o and Kratky Plots
- ♦ Nuclear Magnetic Resonance (NMR)

Ensemble averaged observables: CS, J-Couplings and RDCs Dynamic dependent Parameters: Relaxation Rates and PREs

♦ X-ray Crystallography

Structure determination in the bound form

De Biasio et al. Nature Comm. 2015

Landrieu I, Lacosse L, Leroy A, Wieruszeski JM, Trivelli X, Sillen A, N. Sibille, Schwalbe H, Saxena K, Langer T, Lippens G. *NMR analysis of a Tau phosphorylation pattern.* J Am Chem Soc 128:3575-83, 2006

Single Residue Resolution. PLoS Biology, 7(2), 399