Data Processing with iMosflm

launch the graphical interface

```
In the terminal, go in the appropriate directory :
cd data-oleron/RX/lyso-Gd-SAD
or
cd data-oleron/RX/lysozyme-renafobis/BM30A-2014-11-19
```

One directory contains data for the SAD phasing method, the other is for molecular replacement.

Create a directoty for the processing : mkdir process cd process

set up the CCP4 environment and launch iMosflm: setccp4 imosflm

On the left side, you will find the different buttons that execute each step of data processing : images (select the images you will process), indexing (autoindexation in order to find possible cell parameters and possible spacegoup), cell refinement (optimize estimation of cell parametes), integration (get the intensity of all spots on all images). The strategy button is only usefull when collectind data.

Indexation

Select the imates : Session -> Add images A file browser pops up : go in the img directory that lies beside the proces directory (../img)

Select the first image of the dataset : all images are loaded, the first image is displayed.

Check the diffraction quality, the resolution limit...

Before indexing, you will have to change a parameter that defines the geomery of the experimental setup :

T	xperiment s	settings	- + ×			
Experiment	Detector					
Project:	New Pr	oject				
Crystal:	New Cr	ystal				
Dataset:	New Dat	taset				
Title:	Untitle	≘d				
Beam positio	♣ 157.98					
Crystal to det	↔140.80					
Beam diverge	0.02					
Wavelength (0.02					
Wavelength dispersion (Å):			0.0002			
Beam polariz	0.95					
Detector angle (2∈÷, °):			0.00			
Reperse direction of spindle rotation						
Ctor ome	0.0-					
Invert X direction TRUE/FALSE:						
	CI	ose				

Settings -> Experiment settings

Tick the « Reverse direction of spindle rotation.

Click the indexing button : it starts automatically, using 2 images

-	version nan, arst septe		iMosflm ver	sion 7.2.1, 2 ⁻	1st Septemb	er 2015		U				- + ×
Session Settings Help												
🗋 👝 🖬 😹	157.98 🚼 157.7	3 \leftrightarrow 140.80	\$5.00	10.0	0.51	0.71	\$\$0.00		20	Q 😽 🎖	8 22 23	252 🗖
	Autoindexing	9										
Images	prefix_1_#####.im	ng:1, 90					0) 🔦 🖻	2	lr	ndex	8 13
Indexing	Image ∉ : ♣ 1 0.0	range 0 - 1.00	Auto 1568	Man 0	Del 0	>	I/∉(I) 1147	Find	Use V			
Strategy	\$ 90 89.	00 - 90.00	1324	0	0		898	۲				
Cell Refinement												
	🍫 Total		2892	0	0		2045					/ #* / #*'
Integration	Lattice 1											
	Solution	Lat. Pen.	a	b	с	ε±	∈″	e≥	∉(x,y)) Nref	ε×	beam
L liste us	🗄 🛄 1 (ref)	aP 0	37.0	79.2	79.2	90.0	90.1	90.0	0.22	2 1929	0.26	(0.2)
HISIOTY	🗄 💢 2 (ref)	mP 0	37.0	79.2	79.2	90.0	90.1	90.0	0.22	2 1923	0.26	(0.1)
	🗄 🛄 3 (ref)	mP 0	37.0	79.2	79.2	90.0	90.1	90.0	0.21	. 1919	0.26	(0.1)
	🗄 🎞 4 (ref)	mP 0	79.2	37.0	79.2	90.0	90.0	90.0	0.21	. 1914	0.25	(0.1)
	⊞ 🛄 5 (ref)	aP O	37.0	79.2	79.2	90.0	89.9	90.0	0.22	2 1929	0.26	(0.2)
	⊞ Ц 6 (ref)	oC 1	112.0	112.0	37.0	90.0	90.0	90.0	0.22	2 1903	0.25	(0.2)
	⊞ 1 7 (ref)	OP 1	37.0	79.2	79.2	90.0	90.0	90.0	0.21	. 1917	0.25	(0.1)
		mC 1	112.0	112.0	37.0	90.0	90.1	90.0	0.23	3 1914	0.25	(0.2)
	⊞119 (ref)	mC 1	112.0	112.0	37.0	90.0	90.1	90.0	0.23	3 1914	0.25	(0.2)
	± 11 10 (ref)	tP 1	79.2	79.2	37.0	90.0	90.0	90.0	0.21	. 1914	0.25	(0.1)
	10 (reg)	mC 98	37.0	162.7	79.2	90.0	90.0	90.0	-	-		-
	12 (reg)	mC 98	162.7	162 7	79.2	90.0	90.0	90.0	-	-		-
	\square	OC 98	37.0	162.7	79.2	90.0	90.0	90.0	_	_		-
	Terra (led)	90	57.0	102.0	(9.2	50.0	50.1	90.0	_	-		
	Lattices: Sh	ow								Start bear	n search	Show

Check the proposed cell parameters : what are the lenghtes ? the angles ? The default proposed symmetry (P4) can be used as a starting hypothesis.

In the frames displaying window, you can now load any images, and predicted spots for this rotation angle will be displayed.

Integration and scaling

Hit the integration buttons : all images from the dataset are selected. Hit the process button , get a cup of coffee while the computer works for you. Keep an eye on the central profile (red circle) :

If something goes wrong, you will see it quckly !

When processing is finished, we can validate our hypothesis about symmetry, and scale and merge our data : click the QuickScale buron (green circle above). Get another cup of coffee.

When scaling is finished, a new window pops up, where you can check what happens.

*	during the during the	w 1.16 - Quick Scale	-	+ ×				
<u>F</u> ile <u>E</u> dit <u>W</u> indow <u>H</u> elp								
🛯 🎽 🔛 😢 🔍			\times	0				
Print PDF/PS Refresh CCP4	ļ		Preferences	Exit				
Results Log File								
Quick Scale								
				•				
Run of POINTLESS on 23/ 5/2016 at	12:17:24		_					
Result								
Best Solution: space	e group P 41 21 2							
Reindey operator.		[b k 1]						
Laue group probabil	ity:	0.999						
Systematic absence	probability:	0.919						
Total probability:		0.918						
Space group confide	nce:	0.903						
Laue group confiden	ce	0.999						
WARNING: You will have	to resolve the e	nantiomorphic ambiguity later						
Unit cell: 79.21	79.21 37.00	90.00 90.00 90.00						
39.60 to 1.20 - Resolution range used for Laue group search								
39.60 to 1.20 - Resolution range in file, used for systematic absence check								
Number of batches in file: 164								
The data do not appear to be twinned, from the L-test								
Please cite:								
				-				

What is the proposed spacegroup ? What does the Table 1 looks like ? Are we ready for phasing ?