

Parcd'Innovation - 1, rue Laurent Fries - ILLK IRCH - CU. DE STRASBOURG - FRAN

Traitement d'image et reconstruction tri-dimensionnelle

ReNaFoBis Ile d'Oléron 5th June 2014

Jean-François Ménétret for Bruno Klaholz http://www.igbmc.fr http://igbmc.fr/Klaholz

Siemens stars: a whole range of spacings / frequencies in a single image

One wedge every 1.5 degree

It is used to test the resolution of optical instruments.

> drawn by M. van Heel

Calculated effect of an electron microscopical PhCTF on the image of a Siemens star

Powerspectrum = Fourier Transformation of the image

Profile of the intensity distribution

very low resolution difficult to measure

low resolution low frequency high resolution high frequency \rightarrow averaging techniques

I. Pre-processing

- correction of the Contrast Transfer Function

Weak-phase biological specimen → weak-contrast image

$$\operatorname{CTF}(f) = A(\sin(\pi\lambda f^2(\Delta z - 0.5\lambda^2 f^2 c_s)) + B\cos(\pi\lambda f^2(\Delta z - 0.5\lambda^2 f^2 c_s)))$$

Phase contrast and amplitude contrast

 λ wavelength defined by accelerating voltage (e.g. high tension 200 kV --> λ = 0.025 Å)

Cs spherical aberration coefficient, determines the quality of objective lens

B fraction of amplitude contrast

A defocus-dependent envelope function

 Δz : the defocus value, (offset from focus, "Scherzer" focus, underfocus: <u>focal point is below</u> <u>the sample</u>)

f, spatial frequency

I. Pre-processing

- correction of the contrast transfer function (CTF)

Therefore: data collection over range of defocus values, e.g. under-focus -1.0 – 3.0 μm

Combination of powerspectra from different defocus images

(spectra also take the envelope function into account)

In EMAN2 on Virtual Machine

- 1) display images
- 2) calculate their FFT
- 3) to see the CTF + noise + structure factor

In EMAN1 on Virtual Machine

- 1) simulate the CTF, envelope function, Nyquist limit
- 2) add several CTF curves
- 3) See complementarity between curves at different defocus values Δf

Cryo-EM; Contrast Transfer Function

- angle assignment
 - angular reconstitution (in early stage of structure determination)
 - projection matching (if structure already well refined): find best correlation between input image and reference images from 3D re-projections)

3D reconstruction of single particles: **assumptions**? **unique** particle type in **random** orientations

- **II. Structure determination**
- angle assignment
 - angular reconstitution

amplitude-square-root filtered

360

1

IGBMC

Select 3 clearly different views (here: class average numbers 1,48,76):

- **II. Structure determination**
- angle assignment
 - angular reconstitution

Particle angles plotted on sphere:

Preferential views

- angle assignment
 - angular reconstitution

In case of *ab initio* structure determination by

reference-free alignment and angular reconstitution:

Does not allow to determine handedness, requires either:

- <u>random conical tilt</u> (Radermacher *et al.*, J. Microsc. 1987)
- <u>tomography</u>
- phase residual error using a tilt pair (Rosenthal & Henderson, JMB 2003)
- fitting of crystal structures

Random Conical Tilt method (Radermacher 1987)

Tilt pair (45deg/0deg); tilt axis

THE "cone""

- 3D reconstruction

- 3D reconstruction

(representations of central sections in Fourier space)

- 3D reconstruction

sections of 3D's calculated from 250 class averages with <u>strong preferential views</u>

non-weighted BACK-PROJECTION

Weighted BACK-PROJECTION waited

- structure refinement

- centering/alignment
- variance analysis + classification
- angle assignment
- angular reconstitution \rightarrow 3d-reconstruction
- reprojections = new references

improve quality of angle assignmentimprove quality of particle alignment

equally distributed forward-projections (re-projections)

- resolution assessment

Keep in mind: resolution is what you can resolve in the 3D map!

- map interpretation ; fitting of crystal or NMR structures

Fitting procedures:

- manual fitting (e.g. O, A. Jones, Acta Cryst. (1991))
- real space fitting
- reciprocal space fitting
 - 1) global search
 - 2) refinement
 - e.g. torsion-angle molecular dynamics
 - fit complete structures, domains, factors;
 - Usually backbone is enough.
 - rigid body or flexible fitting
 - use full maps or difference maps
 - Be careful with local minima and over-fitting!

Frisbi.eu/Centers/Instruct-Center-France-1-IGBMC/Cryo-E	lectron-Microscopy		⊽ C 8 - frisbi ins	truct	₽ 🖡 🏫	🚖 🖻 🕥	AB 🥵	ABP 👻	≡
YAHOO! frisbi instruct	🛛 🔾 🔶 ebay 🔍	a 📕 🔛	🌌 🏹 🖪 🕒 🕂	-					Ф
FRISBI 🐵		HOME	PLATFORMS CATALOGUE	CENTERS	TRAININGS	SUBMIT A P	ROPOSAL		^
INSTRUCT CENTER - FR	NCE 1 - IGBMC			SCIEN	ITIFIC CONTACT	Γ			

Cryo Electron Microscopy

A Titan Krios cryo electron microscope will be installed during 2013. This is the latest generation electron microscope with capacities for high-resolution data collection for both Cryo Electron Tomography (CET) experiments and Single Particle Analysis (SPA) with automated data collection. The electron source is a Field Emission Gun (FEG) that can be operated at 80keV, 100keV, 200keV or 300keV. An automatic loading mechanism allows mounting twelve grids at a time. This microscope is equipped with a CMOS (FEI FALCON 4K*4K) high-sensitivity direct electron detector camera.

The Tecnai F30 Polara cryo electron microscope allows high-resolution SPA and CET automated data collection. Its FEG is usually tuned to 100keV, 200keV or 300keV. The grids are manually mounted 6 at a time. This microscope is equipped with 3 digital cameras: FEI CMOS 4K*4K "FALCON", FEI CCD 4K*4K "EAGLE" and a GATAN CCD 2K*2K "ORIUS".

The Tecnai F20 is equipped with a FEG operated at 100keV or 200keV. Grids are mounted one at a time using a Gatan side-entry cryo-holder. This microscope is equipped with one digital camera (GATAN CCD 2K*2K "US10001"), it is used to collect data for cryo-SPA or room temperature electron tomography using a Fischion side-entry holder.

Cryo-EM grids are flash-frozen in a temperature and humidity controlled environment using a Vitrobot system (FEI).

Although all our microscopes are equipped with digital cameras, we can still record images on films and scan them with a high-resolution Heidelberger Druckmaschinen drum scanner (5 micron pixelsize)

6) 🧉	1		C:\.	9	ø j	0	P	A	
	· · ·						 -			1

Dr Bruno Klaholz

Bruno.KLAHOLZ@igbmc.fr

Dr Patrick Schultz

Patrick.SCHULTZ@igbmc.fr

Technical Contact

Dr Jean-François Menetret

Jean-Francois.Menetret@igbmc.fr

OTHER PLATFORMS

Sample preparation

- Bacterial expression
- Baculovirus expression
- Yeast expression
- Purification
- Mammalian expression

urmal Chiff A

Biophysical characterisation

- Analytical Ultra Centrifugation
- Calorimetry

Thank you for your attention