

Synchrotron Radiation for Integrative Structural Biology

ReNaFoBis Summer School, Ile d'Oleron, June 1- 6 June 2014.

L.G.Parratt, Rev. Sci. Inst (1959) <u>30</u>, 297-299 THE REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 30, NEW SERIES JANUARY-DECEMBER, 1959 A publication of the AMERICAN INSTITUTE OF PHYSICS 335 East 45 Street, New York 17, New York

Use of Synchrotron Orbit-Radiation in X-ray Physics* L. G. PARRATT

Cornell University, Ithaca, New York (Received December 1, 1958)

It is well known by now that intense x-radiation is emitted by the centripetally accelerated electrons in the orbit of a high-energy synchrotron.¹ Comparison is made here of the prospective usefulness of this radiation in the range of wavelengths 0.1 to 20 Å with the x-rays obtainable from a conventional x-ray tube.

<u>much greater intensity</u> would be produced by applying a sudden high magnetic field pulse in a small length of the path of the high-energy electron. This, for instance, could be done as a <u>"kink" in the synchrotron</u> orbit, **or** at <u>the output of a linear accelerator</u>.

If one uses the <u>radiating time of one "bunch</u>" of electrons as it passes in orbit, the maximum rate for useful irradiation of material with the 6-Bev beam is about $\frac{10^{20} \text{ photons per second at 1 Å}}{10^{20} \text{ photons per second at 1 Å}}$

Synchrotron Orbit-Radiation	Power Averaged Over	Acceleration Cycle	E _{max} = <u>6 Bev</u>	R=26 meters
<u>1.07 Bev</u> 3.8 meters	0.32 Bev 1 meter	λ in angstrom	s6 BeV	1.07 BeV
0.32 BeV				

FIG. 1. The electromagnetic radiation emitted from centripetally accelerated electrons in synchrotrons in the wavelength range of ordinary x-rays. (The calculations for this figure were made by Tomboulian and $Bedo^2$.)

 $\varepsilon_x = \sigma_x \sigma'_x \quad \varepsilon_y = \sigma_y \sigma'_y$

Synchrotron Radiation Source Points.

Wiggler or Undulator.

Visual model of SR

 Program due to Shintake (RIKEN, Hyogo, Japan) gives visual simulation of field lines from moving charges and different trajectories.

Properties of Synchrotron Radiation.

- Very high intensity.
- Very broad energy spectrum (X ray IR).
- Naturally highly collimated
- Small source size.
- High degree of polarisation.
- Pulsed time structure.
- High brilliance machines give partly coherent beam, next generation of sources will give almost fully coherent beams.

http://srs.dl.ac.uk/srworld/world_sr. html

SOLEIL

Saint Aubin, near Gif/Orsay/Saclay, close to Paris.

2.75 GeV electron storage ring, opened 2008.21 straight sections available for insertion devices

26 beamlines open to users, 3 under construction

Broad energy coverage: from far IR to hard X-rays.

Operation mode: 425 mA, « top up injection »

Max

fluorescence excitation spectra of natural occuring fluorochromes

First reported combination of SHG and SR light excitation auto-fluorescence for biological tissue

- Left :"Single photon" UV Fluorescence image (different bandpass filters, collagen green, a.a's red) of mouse liver : sensitive to all types of collagen. Right : SHG (green, only sensitive to types I and II) and TPEF (ochre).
- Scale bar is 20 µm, section thickness 20 µm

Zubkovs et al., Analyst (2014)

XRF tomography: quantitative 3D elemental distribution,

Three-dimensional rendering of the volumetric multi-element distribution within freshwater diatom

MD de Jonge et al., PNAS 2010, 107:15676-156

Optical scheme of Nanoscopium

Microscopie optique

Lumière visible

objet

image

Cristallographie de rayons X

lentille

Rayons X

cristal

diffraction

calculs

densité électronique

The phase problem

2D X-ray detector characterization

Quantitative evaluation of the performances

Detectors Group – Proxima 1

Evaluation of the performances to reproduce the photons image

From the ADSC Q315 to the Pilatus Detector

Effect of fine slicing / shutterless data collection using PILATUS 6M

PROXIMA 1 operating conditions – Beam almost parallel.

۰	•	•	•
91 x 67	94 x 66	104 x 70	130 x 83
µm,	µm,	µm,	µm,
d=200m	d=400	d=600	d=900
m	mm	mm	mm

Bimorph mirrors take approximately 10 minutes to stabilise after beam focus change. Centroid of the focal spot remains stable (no additional realignment required). Horizontal divergence 45 μ rad, vertical 31 μ rad

Images taken prior to PX1 optics upgrade (full focus 125 x 65 microns, now 80 x 30 microns)

Good s:n from low dose - "gentle" data collections

- SLS : Small beam, translate crystal (up to 6x) - low dose wedge - merge data from many crystals, PILATUS detector.
- Optimisation of background (slits, aperture), "slow" data collection with highly attenuated beam.
- Eukaryotic ribosome (Strasbourg).
- P21 303 x 286 x 435 Å, β=99°.

Focal Spot Optimisation of PROXIMA 2a Using Bimorphs

PX2-A Future Directions

- Cartography
 - Finding the best diffracting part of a crystal
 - Low X-ray dose scans (raster / helical)
- Merging XRD data
 - Cluster analysis

In situ data collection : current state-of-the-art

Site	Current beamline capabilities			
	Routine plate- screening	Regular with sample env reconfigurations	Infrequent ad hoc set- ups	
ESRF	FIP		BM16	
SLS	PX III	PX II		
Diamond	104	124		
Bessy		14.1		
ALS		8.3.1		
APS			GMCA-CAT IMCA-CAT NE-CAT	

New BLs proposing in situ modes : XALLOC (ALBA), Proxima2A/1 (SOLEIL), VM (DIAMOND).

Gavin Fox, PROXIMA 2a

From Boutet et al, Science May 2012.

Fig. 1. Experimental geometry for SFX at the CXI instrument. Single-pulse diffraction patterns from single crystals flowing in a liquid jet are recorded on a CSPAD at the 120-Hz repetition rate of LCLS. Each pulse was focused at the interaction point by using 9.4-keV x-rays. The sample-to-detector distance (*z*) was 93 mm.

Phasing with anomalous signal of S at wavelengths around 1.8 – 1.9 Å.

Sites found with "identical dose data collection" – top = random geometry, lower = multiple orientations combined.

7 structures solved like this on PX1 in last 12 months. (3 in previous 3 years!) in various different space groups (lowest symmetry P2₁)

In-vacuum End Station

Current Status

Detector

- In-vacuum Pilatus 12M.
- Cylindrical detector
- $2\theta = \pm 90^{\circ}$
- Mechanics built.

Acknowledgements

- DISCO M. Refregiers
- SMIS P. Dumas
- PROXIMA 2a W. Shepard
- In situ data collection G. Fox
- NANOSCOPIUM A. Somogyi
- SAMBA V. Briois
- Detectors K. Medjoubi
- ESRF beamlines and CRGs for many technical developments.

- Storage ring performance and operation – A. Nadji
- DIAMOND soft X-ray beamline – A. Wagner
- All the many users of synchrotron facilities that have brought exciting projects and discussed with me over the last 35 years
- Roger Fourme and R. Kahn, to whom French MX owes a huge debt of gratitude.