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The SRS at Daresbury was the
first dedicated SR source which
came on linein 1981 .
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It is well known by now that intense x-radiation is emitted by theripenéally accelerated electronsin =~ , /_\ o e i
the orbit of a high-energy synchrotrbrComparison is made here of the prospective usefulness of ttiis | [N scestercran Cyce
radiation in the range of wavelengths 0.1 to 20 A with the x-rays obteifrabh a conventional x-ray < :mgs:;\e_e‘s \ :

tube. £ f X ; T

much greater intensity would be produced by applying a sudden high magndtjmufid in a small 3 }‘ ‘ \}\ |

length of the path of the high-energy electron. This, for instance, could be dofi@rds in the e (- N

synchrotron orbitpr at the output of a linear accelerator. i | //‘\\.\

If one uses the radiating time of one “bunch” of electrons as it pessedst, the maximum rate for
useful irradiation of material with the 6-Bev beam is abo# illotons per second at 1 A;

Synchrotron Orbit-Radiation Power Averaged Over Acceleration CyElg,=6 Bev R=26 meters / | / ‘ /\:\\
1.07 Bev 3.8 meters 0.32 Bev 1 meter A in angstroms6 BeV 1.07 BeV || (Tt
0.32 BeV W e
A n angstroms

FIG. 1. The electromagnetic radiation emitted from centripesaltglerated electrons in synchrotrons
in the wavelength range of ordinary x-rays. (The calculations fofighi® were made by Tomboulian

and Bedé.)
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Synchrotron Radiation Source Points.
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Visual model of SR

Program due to Shintake (RIKEN, Hyogo,
Japan) gives visual simulation of field lines
from moving charges and different
trajectories.

Properties of Synchrotron

Radiation.

Very high intensity.

Very broad energy spectrum (X ray — IR).
Naturally highly collimated

Small source size.

High degree of polarisation.

Pulsed time structure.

High brilliance machines give partly coherent beam, next
generation of sources will give almost fully coherent
beams.




http://srs.dl.ac.uk/srworld/world_sr.
html
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n, near Gif/Orsay/Saclay, close to Paris.
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2.75 GeV electron storage ring, opened 2008.
21 straight sections available for insertion
devices — N
26 beamlines open to users, 3 under
construction sscut
Broad energy coverage: from far IR to hard X- B nanos
rays. 4 s
Operation mode : 425 mA, « top up injection » - '
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fluorescence excitation spectra of

( s \ natural occuring fluorochromes
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First reported combination of SHG and SR
light excitation auto-fluorescence for
biological tissue

e Left :“Single photon” UV
Fluorescence image
(different bandpass filters,
collagen green, a.a’s red)
of mouse liver . sensitive

to all types of collagen.
Right : SHG (green, only
sensitive to types | and Il)
and TPEF (ochre).

« Scale bar is 20 um,
section thickness 20 pm

Zubkovs et al., Analyst (2014)




X -Ray Absorption Spectroscopy
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Scanning hard X-ray imaging techniques

Raster scanning of the sample
3D information (tomography): by sample rotation
Simultaneous multiply detections

X-ray fluorescence
detector

Transmission
optics | Intensity

momtors

Beam size: down to
~30-50 nm

Sample
scannin
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XRF tomography: quantitative 3D elemental distribution,

Three-dimensional rendering of the
volumetric multi-element distribution
within freshwater diatom

Focussed X-ray beam
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Current Opinion in Structural Bi

MD de Jonge et al., PNAS 2010,
107:15676-156

Currant Cpingon in Structural Biology

Optical scheme of Nanoscopium
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The phase problem
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2D X-ray detector characterization

Evaluation of the performances to reproduce the photons image

Perfect image

¢ Nb of photons
e Poisson noise

* Efficiency
e Dynamic
e Linearity
e Point spread function
e spatial sampling

® noise

¢ Contrast reduced

® noise increased

->Signal/noise
reduced
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of input image with
the MTF and DQE

Quantify the degradation
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Detectors Group — Proxima 1

Quantitative evaluation of the performances
of a 2-D X-Ray detector

S. Hustache, P. Legrand, A. Thompson and K. Medjoubi.

Imaging performance of 2D X-ray detectors can be described by the linear system transfer
theory. In this approach, input-output relationships of an imaging system are expressed in
terms of three transfer functions: the modulation transfer function (MTF), the noise power
spectrum (NPS) and the detective quantum efficiency (DQE). These fumctions quantify the
propagation quality of the spatial distribution of the incident photons, including statistical
fluctuations. More familiar parameters [such as X-ray sensitivity, dymamic range (which
includes linearity), spatial homogeneity, spatial linearity, stability, lag effects and, if
available, energy resolution] are implicit in these transfer functions. Quantified separately,
these parameters improve the understanding of the physical consequences of specific aspects
of the MTF, NPS and DQE.In this document, these functions and parameters are defined and
methods of measuring them are established.

In the following document only monochromatic beam exposure is considered and
measurements are to be performed at different energies. All the relevant quantities will be
determined after the usual image corrections (energy dependant flat field corrections, dark
current subtraction, spatial distortion correction etc ...).

These measurements will be done with different configurations of the detector (Binning,
Gain, shaping time, threshold. ) potentially used during scientific experiments, on different
parts of the detector (including interfaces hetween modules to examine boundary effects) and
at different energies.

e [|MTF, NPS and DQE
e Linearity and dynamic range
e Spatial Homogeneity

e Spatial Linearity

¢ Noisy or dead pixels

¢ Imaging stability

e Framerate

e Lag effects

e Energy resolution

NPS) K. Medjoubi, Detector Group, Synchrotron Soleil

From the ADSC Q315 to the Pilatus Detector

The ADSC Q315

Indirect detection

PHOSPHOR

FIBEROPTIC TAPER
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Drawbacks:

readout time, limited dynamic, signal/noise limited due to readout noise,
use of a shutter, spread at the bottom of the PSF

Pilatus 6M
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Large Area Photon Counting X-ray
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Active area 315 mm x 315 mm
scintillator gadox

Number of pixels 6140 x 6140

Eff. pixel size 51 pm x 51 um
CCD pixel size 14 pm x 14 pm
Readout time Andy

Operating temp. -45°C

Dark current 0.015 e-/pixel/second
Readout noise 11e-/2.7 ADU
Dynamic 14 bits

PSF, MTF(3Ip/mm) 90um, 40%

DQE(>100 photons) @ 10keV ~ 80%
DQE(<50 photons) @ 10keV <40%

Active area 424 mm x 435 mm
sensor 320um Si

Number of pixels 2463 x 2527

Pixel size 172 um x 172 um
Readout time 80 ms

No Dark current and no readout noise
Shutterless operation

Energy resolution 500eV
Adjustable threshold 2 —20 keV
Dynamic 20 bits

PSF, MTF(3lp/mm) 170 pm, 60%
DQE @10 keV (1 up to 106 ph) 90%

Detectors Group,
otron Soleil




Effect of fine slicing / shutterless
data collection using PILATUS 6M

3. Data quality improvement at high
resolution
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Insulin data sets covering 180° of rotation, all
collected with the same angular speed.

--> Gain in speed & data quality

M2 Mirror|Support




PROXIMA 1 operating conditions — Beam
almost parallel.

91 x 67 94 X 66 104 x 70 130 x 83
Hm, um, pum, pum,
d=200m d=400 d=600 d=900
m mm mm mm

Bimorph mirrors take approximately 10 minutes to stabilise after beam
focus change. Centroid of the focal spot remains stable (no additional re-
alignment required). Horizontal divergence 45 yrad, vertical 31 yrad

Images taken prior to PX1 optics upgrade (full focus 125 x 65 microns, now
80 x 30 microns)

Good s:n from low dose - “gentle” data
collections

SLS : Small beam, translate
crystal (up to 6x) - low dose |
wedge - merge data from
many crystals, PILATUS
detector. |

Optimisation of background
(slits, aperture), “slow” data
collection with highly
attenuated beam.

Eukaryotic ribosome
(Strasbourg).

P21 303 x 286 x 435 A,
=99°.
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Focal Spot Optimisation of
PROXIMA 2a Using Bimorphs
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PX2-A Future Directins

» Cartography » ‘
— Finding the best diffracting part of
a crystal

— Low X-ray dose scans (raster /
helical)

 Merging XRD data
— Cluster analysis




In situ data collection : current state-of-the-art

Automated Piate Transfer @ @ In Situ X-ray Diffraction Screening

]

Formulatrix RI1000

Rock Maker Web

LI X0 300 X0 X

Site Current beamline capabilities
Routine Regular with Infrequent
plate- sample env ad hoc set-
screening | reconfigurations ups
ESRF FIP BM16
SLS PX 1l PX1I
Diamond 104 124
Bessy 14.1 New BLs proposing in situ modes :
ALS 831 XALLOC (ALBA), Proxima2A/1 (SOLEIL),
IMCA-CAT
NE-CAT Gavin Fox, PROXIMA 2a

From Boutet et al, Science May
2012.

Interaction m
(10 um? focus) §
Be lenses

CSPAD detector Undulator
(z = 93 mm) (420 m upstream)

Fig. 1. Experimental geometry for SFX at the CXl instrument. Single-pulse diffraction patterns from
single crystals flowing in a liquid jet are recorded on a CSPAD at the 120-Hz repetition rate of LCLS. Each
pulse was focused at the interaction point by using 9.4-keV x-rays. The sample-to-detector distance (2) was
93 mm.




Phasing with anomalous signal of S at wavelengths
around 1.8 - 1.9 A.

Sites found with “identical dose
data collection” — top = random
geometry, lower = multiple
orientations combined.

- CCall vs. CCweak -

CCall

Data collection around multiple axes
with kappa goniostat or multiple
crystals (Hendrickson).

Use of “zero noise” pixel array
detector, which permits collection at
lower dose. C
7 structures solved like this on PX1 in 3% 1 ontem @ ®
last 12 months. (3 in previous 3 years!) T )
in various different space groups
(lowest symmetry P2,)

1 T

0 + + + + + CCweak

e |n-vacuum End Station
Current Status —_Vessel and major components orde

red.
Fluorescence Detector readout | o
detector o

electronics box

Pulse tube
Detector R
— In-vacuum Pilatus e S5 Omega
12M. axis
—  Cylindrical detector A
- o 2 camera " Diffraction
- 20=%90 _ ple  sample detector

transfer changer

e Vacuum vesse|® Experimental Hutch

— Installation ongoing.

— Mechanics built.

— In manufacture.
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