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Parcours

� Physicien (DEA en physique fondamentale en 1987)

� Thèse sur la dynamique moléculaire par simulation sur une 
protéine, l’utéroglobine (1990)

� Post-doc (Service Militaire) au National Cancer Institute 
(Maryland): cristallographie sur le BPTI et une 
asparaginase utilisée en cancérothérapie

� Chercheur CEA à l’Institut de Biologie structurale
�Cristallographie sur différentes protéines

•Toxine de scorpion et de serpent => résolution atomique
•Deshydrogénase
•Ferredoxine
•GTPases
•Récepteur pour l’antigène du lymphocyte T

�Immunologie structurale
•Interaction, reconnaissance, lien entre interaction à l’echelle
moléculaire et activation au niveau cellulaire
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How can we “see” macromolecules?

� Based on interaction between radiations and matter

� The wavelength of the radiation used should be suited to 
the size of the smallest details we want to observe:

�Resolution limit in diffraction experiments is λ/2

� Proteins and macromolecules assemblies are too small (1 
to 50 nm, 10 to 500 Å) to be observed with visible light 
(300 nm <  < 800 nm)

� To see atoms, a wavelength of about 1 Å is required
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Three types of “radiation” commonly used

� X-rays
�Electromagnetic waves / photons

•Photon energy w = hc/ = h with h = 6.6257 10-34 J.s (Plank constant)
•7 keV < w < 17 keV or 1.7 Å > λ > 0.7 Å

� Neutrons
�Neutral particle (mn = 1.6749 10-27 kg)

•Energy w = 1/2mnv2, wavelength λ = h / mnv
•λ = 1.5 Å for v = 2600 m/s and w = 3.6 10-2 eV

� Electrons
�Negatively charged particle (q =  1.6 10-19 C, me = 9.1091 10-31 kg)

•Energy w = 1/2mev2, wavelength λ = h / mev
•λ = 1.2 Å for v = 6000 km/s and w = 100 eV

� Here, we will focus only on X-rays!
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X-rays interact with electrons in atoms

� Elastic scattering (no loss of energy, wavelength is 
conserved)

�Rayleigh scattering: bound electron (photon energy << electron 
binding energy)

�Thomson scattering: free electrons (photon energy >> electron 
binding energy)

•Carbon atom E(1s) = -1013 eV, E(2s,2p) = -36 eV  to be compared to 7 
to 15 keV for X-ray photons
•Photon energy should differ from element absoption edges

� Inelastic scattering (loss of energy, scattered photon have 
a larger wavelength)

�Compton scattering (a bound electron is ejected in the 
continuum)

�Raman effect (a bound electron jump to a free state of the atom
or molecule)

� Ionisation
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How a photon is scattered by an atom ?

� Classical model
�The photon is scattered by the electronic cloud of the atom

�The incident electromagnetic wave induce the oscillation of the 
electronic cloud 

�The negatively charged electronic cloud et the positively charged 
nucleus become an oscillating dipole, thus emitting a spherical 
electromagnetic wave of same wavelength and a phase difference 
of π.
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Scattering by one atom

� The planar incident wave induces the emission of a 
spherical wave of same wavelength and with a π phase 
shift 
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Scattering by two atoms

� The two atoms are emitting a spherical electromagnetic 
wave. If the two atoms are not mobile and close by, the 
two waves interfere .

1ère Ecole RéNaFoBiS, 1 - 7 juin 2014, Oléron, D. Housset
8



Scattering by a solid sample

� What do we measure on the detector ?
•Incident wave described by its wave vector q0 (|q0| = 2π/λ) or s0 = q0 / 
2π (|s0| = 1/λ) : E0 cos[ ωt – q0.r ]
•Scattered wave described by its wave vector q1 (|q1| = 2π/λ) or s1 = q1 / 
2π (|s1| = 1/λ)
•s = s1 – s0 is the scattering vector
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Relation between scattered wave and solid sample?

� Incident wave : E0 exp[ i(ωt – q0.r) ]

� f(rM) is the scattering power at point M defined by rM

�The wave scaSered by the small volume ∂v around M, as observed in P 

is:

•∂ E(s) = E0/r’ f(rM) exp[ i(ωt – q0.rM) ].exp(-iq1.(r-rM)). exp(iπ) ∂rM

• = E0/r’ f(rM) exp(i(ωt – q1.r)). exp(2iπ rM.s).exp(iπ) ∂rM

� To calculate the wave scattered by the entire sample, we have 

to sum on the entire volume of the sample:

�E(s) = ∫v E0/r’ f(rM) exp(i(ωt – q1.r)). exp(2iπ rM.s).exp(iπ) ∂rM

� = E0/r’ exp(i(ωt – q1.r)) exp(iπ) ∫v f(rM) exp(2iπ rM.s) ∂rM

�E(s) is proportional to the Fourier transform of the scattering power of 

the sample

� For X-rays, this scattering power is proportional to the electron 

density

�E(s) is proportional to the Fourier transform of the electron density
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Structure factor

� E(s) = E0/r’ σ ∫v ρ(r) exp(2iπ r.s) ∂r

� Structure factor: 
�Direct Fourier transform of the electron density

�F(s) = ∫v ρ(r) exp(2iπ r.s) ∂r

�Complex number (amplitude and phase)

� Electron density
�Indirect Fourier transform of the structure factors

�ρ(r) = ∫v F(s) exp(-2iπ r.s) ∂s

� The detector measures the intensity of the scattered wave

� The intensity of the scattered wave is proportional to the 
square of the structure factor modulus

�I(s) α F(s).F*(s) = |F(s)|2
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A few exemples …

� Diffusion spectra of one atom
�Spherical electron density

�fat(s) = 2 ∫r=0,+ ∞ at(r) r  sin(2 sr) / s ∂r

�fat(0) = number of electrons in atom

�fat(s) is constant when atom is ponctual (neutron diffraction)

�fat(s) is the atomic scattering factor
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More atoms …

� Diffusion by two atoms

� Diffusion by five atoms
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� Four atoms: effect of translation and rotation of the set of 
atoms

�No change upon translation

�Diffusion spectra is rotated when the set of atoms are rotated
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Structure factor of an assembly of atoms

� fj(s) is the scattering factor of the atom j

� The phase shift of the wave scattered by an atom in 
position rj, in the direction defined by scattering vector s is 
(relatively to an atom at the origin):

�2πrjs

� The structure for an assembly a N atoms is thus:
�F(s) = ∑j=1,N fj(s).exp(2iπrjs)

� fj(s) are known and tabulated for each element
�Calculating the structure factor of an assembly of atoms is 
straightforward
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A specific case of solid sample: the crystal

� The crystal is described by a lattice which characterize the 
three-dimensional periodicity 

� The lattice is define by three vector, a, b, c, that define the 
unit cell

� The content of each unit cell is identical
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� The structure factor is:
�F(s) =  ∫vech. (r) exp(i 2s.r) ∂r

�F(s) = ∑n ∫vmaille (r+rn) exp(i 2 s.(r+rn)) ∂r

�F(s) = ∑n exp(i 2 s.rn) ∫vmaille (r) exp(i 2 s.r) ∂r

�F(s) = ∑nexp(2iπ n1a.s)exp(2iπ n2b.s)exp(2iπ n3c.s) ∫vmaille (r) exp(i 2 s.r) ∂r

� This structure factor close to zero, except for specific values of s :
�a.s = h, b.s = k, c.s = l where h, k, l are integers (Laue equations)

�Diffraction spots instead of diffusion spectra

�Discrete structure factors

� In directions that satisfy Laue equation, the structure factor is the 
one of the unit cell, multiplied by the number of cells in the crystal.

� The crystal is a signal amplifier! 

Structure factor of a crystal
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Reciprocal lattice

� If s satisfy the Laue equation:
�a.s = h, b.s = k, c.s = l where h, k, l are integers

� Then s is a vector of a lattice named reciprocal lattice
�s = h.a* + k.b* + l.c* where

•a* = b Λ c / Vmaille
, b* = c Λ a / Vmaille , c* = a Λ b / Vmaille

•Vmaille = (a Λ b).c
•Larger unit cell => smaller reciprocal cell => closer spots on diffraction 
spectra

� Ewald diagram
�|s| = 1/dhkl = 2sinθ/λ

�(Braggs’s law)
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What does represent the structure factor

� A parallel with sound
�in crystals, ρ(r) is a periodic function in the three dimensional 
space

�The sound signal is periodic function of time (one dimension)

� F(s) are the coefficient of the development of ρ(r) in a 
Fourier serie :

�F(s) = ∫vmaille (r) exp(i 2 s.r) ∂r

�(r) =  1/Vmaille s F(s) exp(-i 2s.r)

� The Fourier transform of the sound signal provide the 
frequencies contained  in the sound

�Include the fundamental frequency and the harmonics (2 times, 
3 times, … the fundamental frequency)

� The largest s or frecency is, the more detailed is the 
drescription of (r) or of the sound signal
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What does the diffraction tell us ?

� The position of spots on diffraction images will allow the 
determination of the unit cell dimension and the 
orientation of the crystal

� The intensity of each spot contains information on the 
electron density of the entire cell

�I(s) = F(s).F*(s) 

� = (∫vmaille (r) exp(i 2 s.r) ∂r) (∫vmaille (r) exp(-i 2 s.r) ∂r)
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Rap1 diffraction image

Courtesy of Dr. Marie-

Hélène Le Du



Resolution

� In crystallography
�d = 1 / |s| in Å

� Directly related with the distance from the center (direct 
beam position)  of the diffraction image:

�If D is the crystal - detector distance, O’ the center of diffraction 
image, P the position of diffracted beam on the detector

�|O’P| = D sin2θ

�1 / d = |s| = 2sinθ / λ

�The further from the center, the larger s modulus, the lower 
value of d (higher resolution) in Å

� Maximum resolution in diffraction experiments
�2θ = 180° => θ=90° => d = λ / 2

� Details that can be seen (separated)
�d/√2 in crystallography. What about SAXS ?
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Calculating the electron density ?

� Simple in principle
�The electron density within the unit cell can be derived from the 
structure factors :

•(r) =  1/Vmaille s F(s) exp(-i 2s.r)
•But …
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Calculating the electron density

� We do not measure F(s) but only an intensity I(s) which is 
proportional to the square of F(s) modulus: the phase of 
the scattered wave is lost

�F(s) = |F(s)|exp(iφ(s))

�Intensity measurements do not allow the calculation of the 
electron density for maromolecules

� Methods have been developed to provided a reasonable 
estimate of the phases φ(s) and allow the calculation of 
(r) => Jean-Luc’s Talk
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Most of the structural information is in the phases
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Object Diffusion 
spectra

For each object we
keep the phase and 
take the amplitudes of 
the other object

Inverse Fourier 
transform ...
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Patterson function

� The Patterson function can be calculated without phase 
information

�P(u) = 1/V ∑s F(s) F*(s) exp (-2iπ u .s)  

� = 1/V ∑s |F(s)|2 exp (-2iπ u .s) 

�It is the Fourier tranform of the squared amplitude of structure 
factors

� It represents the autocorrelation function of the electron
density:

�P(u) = ∫v ρ(r). ρ(r+u)dr

�P(u) has a local maximum when u is an interatomic vector

� Can be used to solved structures when the number of 
atoms is small (less than 50) : not suitable for proteins

� Very useful for phasing (MR, Heavy atom derivatives, 
anomalous signal)
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What about macromolecules in solution ?

� Macromolecules move due to thermal motion
�Each macromolecules adopts all orientations during the 
measurements

•Spherical averaging

� The distance between scatterers is not fixed
�The distance between two equivalent atoms in two distant 
molecules vary during the measurement

•=> incoherent scattering 
•=> no interference (≠ diffraceon by a crystal)

•=> Intensities scattered by each molecules adds up 

� Scattering of the solvent is substracted

�Imacromolecule(q) = Isample(q) – Ibuffer(q)

� Provide information on electron density difference 

between the sample and the buffer, ∆ρ(r) 
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� The scattering spectra has a radial symmetry

� One dimensional data due to the spherical averaging

� I(q) = <TF (∆ρ(r)) . TF (∆ρ(-r))>

� I(q) = <TF(∫Vparticle∆ρ(r+u). ∆ρ(u)du)>

� I(q) = 4π ∫0,infp(r).sin(qr)/qr dr
�p(r) is the distribution of distances between all pairs of points 
within the particle weighted by the respective electron densities

� p(r) = r/2π ∫ I(q).q.sin(qr) dq

� Some structural characteristics of the macromolecule can
be derived from p(r).
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Comparison of diffraction and SAXS spectra
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