

Institut national de la santé et de la recherche médicale

Optical and atomic force microscopy: from single molecules to living cells

Frédéric EGHIAIAN, Post-doctoral researcher

(INSERM U1006, Director Simon Scheuring, LABEX InFOrM)

My career...

Master/Ph.D (2001-2005, Paris)

Structural and biochemical studies of the sheep prion protein

Eghiaian et al, PNAS 2004 Eghiaian et al, PNAS 2007 Post-doc (2005-2009, London, 2009-2012 Göttingen):

Single molecule studies of Influenza and ribosomes

Li et al, BJ 2011 Eghiaian et al. JBC, 2012 Li et al., BJ 2014 Eghiaian et al, in preparation **Post-doc and...(2013-...):** AFM of actin dynamics in live cells

Eghiaian et al, submitted to Mol Cell

Eghiaian et al, PNAS 2004 Eghiaian et al, PNAS 2007

How can one see dynamics at the single molecule level ?

Single molecule fluorescence ???

Challenges of single molecule fluorescence

- Contrast: A single fluorophore is not very bright and bleaches fast...
- Resolution: Lateral and Axial resolutions in microscopy are limited !

Abbe Resolution_{x,y} = $\lambda/2NA$ Abbe Resolution_z = $2\lambda/NA^2$ Rayleigh Resolution_{x,y} = $0.61\lambda/NA$ Sparrow Resolution_{x,y} = $0.47\lambda/NA$

http://www.microscopyu.com/articles/superresolution/diffractionbarrier.html

Detecting single molecules by fluorescence microscopy

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2926–2929, April 1996 Biophysics

TH. SCHMIDT, G. J. SCHÜTZ, W. BAUMGARTNER, H. J. GRUBER, AND H. SCHINDLER

Reduce molecular density of fluorophores: single fluorophores resolved

High illumination power -> High Signal-to-noise ratio

Detecting single molecules by fluorescence microscopy

Schmidt et al, PNAS 1996

How to increase signal-to-noise ?

- Decrease background fluorescence
- Increase brightness of fluorophores
 - Inorganic nanoclusters
 - Quantum dots

(Not-so-) New dyes: Quantum dots, inorganic nanoclusters...

Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking Maxime Dahan *et al.* Science **302**, 442 (2003); DOI: 10.1126/science.1088525

BLINKING !!!

How to increase signal-to-noise ?

• Decrease background fluorescence

- Increase brightness of fluorophores
 - Inorganic nanoclusters
 - Quantum dots

Total Internal Reflection: evanescent wave

Axelrod et al, Methods Mol Biol 2008

Advantages of TIRF-M

- Restricted excitation volume (close to surface): better signal to noise
- Gain in excitation light intensity
- No loss/gain in resolution

TIRF-M: single molecule imaging

Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution

Takashi Funatsu^{*}, Yoshie Harada^{*}, Makio Tokunaga^{*}, Kiwamu Saito^{*} & Toshio Yanagida^{*}† a laser in Cy5-4 S-1 Cy3-ADP Pi h ν

NATURE · VOL 374 · 6 APRIL 1995

Increased positional accuracy

 $<\Delta x^2>=s^2/N$

Thompson et al Biophys J 2002

Increased positional accuracy

-Gauss fit of point-spread function

-Standard error of the Gaussian peak=positional accuracy

-1nm positional accuracy achieved

What is the step-size of the Myosin V motor

FIONA confirms hand over hand mechanism

Yildiz et al Science 2003

TIRF-M in live cells

HA-GFP in live HUVECs (low density, 1000 molecules in the image)

After a few seconds....

Eghiaian et al, unpublished

PALM: Photo-Activation Localization Microscopy

PALM: Photo-Activation Localization Microscopy

200 nm

100 1

Betzig et al, Science 2006

Pitfalls of optical microscopy

Requires a reporter fluorescent molecule

- \rightarrow technical limitation (chemical labelling, molecular biology)
- \rightarrow potential changes in functionality (misfolding, steric hindrance, loss of a functional site)
- Limited lateral (10nm) resolution, axial (20nm) and positional accuracy (1nm)
 - \rightarrow Co-localization \neq direct interaction
- One can only see what is labelled
 - \rightarrow Maximum number of simultaneously detected fluorophores is drastically limited

Radiation damage

- \rightarrow Fast photobleaching of the fluorophores
- \rightarrow High power illumination leads to toxicity

ATOMIC FORCE MICROSCOPY

 \rightarrow "...The only method that can self-sufficiently perform nanometerresolution imaging AND nano-manipulation of the sample with pN force resolution (...) in liquid and at room temperature..."

(Eghiaian et al, FEBS Letters review article, to be published)

AFM basics

Eghiaian & Schaap, Methods Mol Biol 2011

Basic AFM: contact mode

Lever deflection: error signal

Piezo retraction: Height measurement

Sample preparation: surface adsorption of a sample

substrate

Unspecific adsorption

-Divalent cations help
-Surface functionalization
(silanes, polylysine, patterning, covalent immobilization)
-planar bilayers (membrane proteins, 2D crystals...)

Sample preparation: mica

Drake et al, Science 1989

Sample preparation: glass substrate

Cantilevers

Cantilever calibration

Eghiaian & Schaap, Methods Mol Biol 2011 Burnham et al, Rev Sci Instr, 2003 $k = \frac{2K_{\rm B}TQ}{\pi S_0 f_0}$

Cantilever calibration

Eghiaian & Schaap, Methods Mol Biol 2011

Forces in AFM-Biology

10⁻¹² stall force of Myosin , kinesin... **10**⁻¹¹ stall force of phage genome packaging motor Complex dissociation force Force **10**⁻¹⁰ **10**⁻⁹ Traction force at a focal adhesion **10**⁻⁸ **10**⁻⁷ Force required to dissociate cell junctions

AFM force resolution

Cantilever theory: force noise

Deflection of a cantilever in liquid

Force noise of cantilevers in liquid

Eghiaian & Schaap, Methods Mol Biol, 2011

Resolution limit: tip sample dilation

Top half information is more relevant

Eghiaian & Schaap, Methods Mol Biol 2011

Membrane protein imaging by AFM

Schabert et al, Science 1994

Membrane protein imaging by AFM

High light conditions Low light conditions

Scheuring et al, Science 2005
Intermittent contact mode

Contact mode (feedback on deflection)

Tapping mode (feedback on amplitude)

Intermittent contact mode

Non-contact mode

Feedback on frequency ???

frequency modulation AFM ! (non-contact mode)

Rankl et al, Ultramicroscopy 2004

Evolution of the atomic force microscope

1985

AFM prototype !

1995

Veeco Nanoscope I (now Bruker)

2005

JPK Nanowizard

Speed limit...

To break the speed limit...

- Increase scanner speed
- Increase cantilever resonance frequency (make smaller)
- Make feedback loop faster

Cantilever theory

Spring constant

$$k = E \cdot t^3 \cdot w / 4 L^3$$

E: Young's modulus T: thickness W: width L: length

Resonance frequency

$$f_0 = \sqrt{(k/m)}$$

m: cantilever mass

THE Breakthrough: High-speed AFM

Dynamic imaging of biological membranes by HS-AFM

Purple membrane 2D crystal formation

Bacteriorhodopsin light response

Omp-F protein-protein interactions in native membranes

AQP0 assemblies

Dynamic imaging of biological membranes by HS-AFM

Shibata et al, Nature Nanotechnology 2010

Dynamic imaging of biological membranes by HS-AFM

Casuso et al, Nature Nanotechnology 2012

Dynamic imaging of biological systems by HS-AFM

Uchihashi et al, Science 2011

Myosin V walk on actin seen by HS-AFM

Kodera et al, Nature 2010

Myosin V walk is driven intramolecular tension release

Kodera et al, Nature 2010

HS-AFM+OM: Imaging of cells

Colom et al Nat. Comms 2013

HS-AFM+OM: Characterization of lens cells junctions

Colom et al Nat. Comms 2013

FORCE MEASUREMENTS BY AFM

Force

Z-piezo travel

Force spectroscopy

Determining Young's moduli of materials

$$E \equiv rac{\text{tensile stress}}{\text{extensional strain}} = rac{\sigma}{\varepsilon} = rac{F/A_0}{\Delta L/L_0} = rac{FL_0}{A_0\Delta L}$$

 $F = \left(\frac{EA_0}{L_0}\right)\Delta L = kx$

usa.jpk.com/index.download.5fb2f841667674176fd945e65f073bad

Determining Young's moduli of materials: Hertz model

 $\frac{\text{Parabolic}}{F = \frac{4\sqrt{R_c}}{3} \frac{E}{1 - \nu^2} \delta^{3/2}}$

Re = radius of tip curvature

R = radius of the sphere

Conical

 $F = \frac{E}{1 - v^2} \frac{2 \tan \alpha}{\pi} \delta^2$

α = semi-opening angle of the cone

usa.jpk.com/index.download.5fb2f841667674176fd945e65f073bad

AFM study of cell mechanics

M. Lekka · P. Laidler · D. Gil · J. Lekki · Z. Stachura A.Z. Hrynkiewicz

Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy

Cell line	Young's modulus (kPa) $\mu_{cell}=0$	Young's modulus (kPa) $\mu_{cell}=0.5$	Number of analysed force curves
Hu609	$12.9 (\pm 4.8) 10.0 (\pm 4.6) 1.4 (\pm 0.7) 1.0 (\pm 0.5) 0.4 (\pm 0.3)$	9.7 (\pm 3.6)	325
HCV29		7.5 (\pm 3.6)	121
BC3726		1.0 (\pm 0.6)	214
T24		0.8 (\pm 0.4)	201
Hu456		0.3 (\pm 0.2)	10

^a The total number of measured cells is about 20 cells for each line

AFM as a Diagnostic tool ???

AFM studies of virus mechanics

X-ray **Atomic Force**

Carrasco et al, PNAS 2006

AFM studies of virus mechanics

Empty capsid

Virion

Carrasco et al, PNAS 2006

Force mapping of flu virions

Force mapping

Li et al, Biophys J 2011, Eghiaian et al JBC 2012, Li et al, Biophys J 2014

AFM studies of influenza virus mechanics

Schaap, Eghiaian et al, JBC 2012

Lipids define mechanical response

Schaap, Eghiaian et al, JBC 2012, Li et al Biophys J 2011

pH-dependent viral stiffness

Li et al, Biophys J 2014

Li et al, Biophys J 2014

Peak force tapping[™]

Mechanical measurements on single proteins

Single pair interaction

Hinterdorfer et al, PNAS 1996

Single pair interaction

 $\tau(f_{\rm u}) = \tau_0 \exp(-l_{\rm r} f_{\rm u}/k_{\rm B}T)$

Baumgartner et al, PNAS 2000 Bell, Science 1977 Evans & Ritchie, BJ 1997

Mechanical characterization of muscle Titin

http://en.wikipedia.org/wiki/Titin

Rief et al Science 1997

Single molecule unfolding

Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM Matthias Rief et al. Science 276, 1109 (1997);

250

200 nm

10⁻³

10⁻²

Pulling speed (µm/s)

10-1

Rief et al Science 1997
High-speed single molecule unfolding

Rico et al, Science 2013

Credits

U1006 Marseille Simon SCHEURING Anna Francesca Rigato

Humboldt Uni Berlin Andreas HERRMANN Christian SIEBEN Kai LUDWIG Chris Höfer Salvatore Chianta

Universität Göttingen Iwan SCHAAP Sai LI

Columbia (NYC, J Frank's lab) Amédée des Georges

NIMR Mill Hill (UK) Claudia VEIGEL

CNRS Gif-sur-Yvette/INRA Jouy en Josas

Marcel KNOSSOW (thesis director) Human REZAEI (unofficial co-director)

Institut Pourquier Stephanie LESCEU

Institut national de la santé et de la recherche médicale

Recommended readings

• Mechanics of Motor Proteins and the Cytoskeleton (J Howard)

- Ando et al, Chem Rev 2014, Filming biomolecular processes by highspeed atomic force microscopy
- Mechanics of the Cell (David Boal)

