

Ecole Nationale de Biologie Structurale Intégrative

1-6 Juin 2014 – Oléron, France

# **Nuclear Magnetic Resonance – Conceptual aspects**

NMR observables: A source of structural and dynamical information for the study of biomacromolecules

Catherine Bougault, IBS, Grenoble

catherine.bougault@ibs.fr

# Curriculum

| 1991-1994  | PhD in Inorganic Chemistry (CEA Grenoble, France)<br>« New asymetric iron-sulfur clusters with cyclotriveratrylenic thiolate<br>ligands : synthesis and spectroscopic characterizations » |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1995       | Postdoctoral position at UC Davis, USA, with G. N. La Mar<br>« Electronic states of high-spin deoxymyoglobin »                                                                            |
| 1996       | Assistant professor in L.E.D.S.S. at Joseph Fourier University<br>Paramagnetic NMR of small molecules                                                                                     |
| 2001-2003  | Visiting scientist at University of Georgia, Athens, with J. H. Prestegard<br>Thermostability of rubredoxin                                                                               |
| Since 2003 | Assistant professor at Joseph Fourier University<br>Research in the biomolecular NMR spectroscopy group at IBS<br>Bacterial cell wall and antibiotic resistance                           |



# X-ray: from the sample to the 3D structure



# NMR: from the sample to the 3D structure



# NMR : a structural biology tool among others

-32

|            |           |                                        |                                                                |          |        |                          | 8000 -   | bacterial complex I - 2010                                                                                       |
|------------|-----------|----------------------------------------|----------------------------------------------------------------|----------|--------|--------------------------|----------|------------------------------------------------------------------------------------------------------------------|
|            | Proteins  | Nucleic                                | Protein/                                                       | Other    | Total  |                          |          | Abottor Allan                                                                                                    |
|            |           | Acids                                  | NA<br>Complex                                                  |          |        | lata                     |          |                                                                                                                  |
| X-Ray      | 83194     | 1522                                   | 4342                                                           | 4        | 89062  | RF 0                     | 6000 -   |                                                                                                                  |
| NMR        | 9176      | 1082                                   | 210                                                            | 7        | 10475  | ESI                      |          |                                                                                                                  |
| Electron   | 540       | 54                                     | 173                                                            | 0        | 767    | mo                       | -        | 70S ribosome - 2006                                                                                              |
| Microscopy |           |                                        |                                                                |          |        | d fr                     |          |                                                                                                                  |
| Other      | 155       | 4                                      | 6                                                              | 13       | 65     | ite                      |          | and the second |
| Total      | 93124     | 2665                                   | 4733                                                           | 25       | 100547 | bos                      | 4000 -   |                                                                                                                  |
| Protein    | n Data Ba | nnk: May<br>http://www.rd<br>PDB Stati | <sup>7</sup> 31 <sup>st</sup> , 201<br><u>csb.org</u><br>stics | 4 statis | tics   | Cumulative structures de | - 2000 - | photosystem I - 2003<br>myosin - 2003<br>F <sub>1</sub> -ATPase - 1996                                           |
|            |           |                                        |                                                                |          |        |                          |          | 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010                                       |



# **NMR: developments and limits**

Liquid-state NMR a serious limit? Linewidth





# **NMR: developments and limits**





# **NMR: developments and limits**

Trying to overcome liquid-state NMR limits – Strategy 2



α-spectrin SH3 domain – INEPT or CP transfer – MAS 24 kHz V. Chevelkov, Y. Xue, R. Linser, N.R. Skrynnikov, B. Reif, J. Am. Chem. Soc., **2010**, 132 (14), pp 5015–5017

# NMR: a structural technique?



#### Some key parameters and their usage in structural biology

#### $\mathbf{H} = \mathbf{H}_{z} + \mathbf{H}_{cs} + \mathbf{H}_{rf} + \mathbf{H}_{J} + \mathbf{H}_{D} + \mathbf{H}_{Q}$



# Some key parameters and their usage in structural biology



#### Chemical shift: a finger print of the biomolecule



#### Chemical shift: a finger print of the biomolecule



Eur. J. Biochem. 268, 5740-5746 (2001)

#### Chemical shift: a finger print of the biomolecule



P. Podbevsek, C. R. Allerson, B. Bhat, J Plavec, Nucl. Acids Res., 2010, 7298-7307



# **Chemical shift: a structural information content**



| CSI = | δ <sub>measured</sub> - | δ <sub>randomcoil</sub> |
|-------|-------------------------|-------------------------|
|-------|-------------------------|-------------------------|

# **Chemical shift: a structural information content**



# **Chemical shift: a structural information content**

#### Talos+ : http//:spin.niddk.nih.gov/NMRPipe

| -106 +/- 11<br>Prev Next Redraw Clear Save Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I 132 +/- 10<br>PSI<br>I 134 +/- 10 | 100 5.                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                              | 14 110                                                                                             |                                                                              |                                                                                     |                                                                       |                                                                                       |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|
| -116 +/- 11<br>Phi<br>Good Ambiguous Bad Unclassif<br>Prev Next Redraw Clear Save Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -116 4/- 11<br>-116 4/- 11<br>Phi<br>Good Ambiguous Bad Unclassifi<br>Prev Next Redraw Clear Save Qu<br>Residue E58, Triplet K57 E58 D59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               | b.,                                                                                                                                                                                                                                  | )                                                                                                                            |                                                                                                    |                                                                              |                                                                                     |                                                                       |                                                                                       | 132 +/- 10<br>Psi                      |
| -116 +/- 11<br>Phi<br>Good Ambiguous Bad Unclassif<br>Prev Next Redraw Clear Save Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -116 +/- 11<br>Phi<br>Good Ambiguous Bad Unclassifi<br>Prev Next Redraw Clear Save Qu<br>Residue E58. Triplet K57 E58 D59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                    |                                                                              |                                                                                     |                                                                       |                                                                                       |                                        |
| Prev Next Redraw Clear Save Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prev         Next         Redraw         Clear         Save         Qu           Residue E58, Triplet K37 E58 D59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                    |                                                                              |                                                                                     |                                                                       |                                                                                       |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Residue E58, Triplet K57 E58 D59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -116 +<br>Ph<br>Good                                                                                                          | /- 11<br>i                                                                                                                                                                                                                           | Ambiguo                                                                                                                      | us                                                                                                 |                                                                              | Bad                                                                                 |                                                                       |                                                                                       | Unclassifi                             |
| ■ Phi: -131 Psi: 126 D: 9.31 N107 E108 K109 4340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -116 +<br>Ph<br>Good<br>Prev<br>Residu<br>Phi: -1<br>Phi: -1                                                                  | /- 11<br>Next<br>E58, Tri<br>09 Psi:<br>31 Psi:                                                                                                                                                                                      | Ambiguo<br>Rec<br>iptet K5<br>131 D:<br>126 D:                                                                               | us<br>Iraw<br>7 158 D<br>8.67<br>9.31                                                              | Cle<br>F3<br>N107                                                            | Bad<br>ar<br>N4<br>E108                                                             | ¥5<br>K109                                                            | 3ave                                                                                  | Unclassifi<br>Qu                       |
| ■ Phi: -131 Psi: 126 D: 9.31 N107 E108 K109 4340<br>■ Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ■ Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -116 +<br>Phev<br>Prev<br>Prev<br>Phi: -1<br>Phi: -1<br>Phi: -1                                                               | - 11<br>Next<br>E58, Tri<br>09 Psi:<br>31 Psi:<br>30 Psi:                                                                                                                                                                            | Ambiguo<br>Rec<br>ptet K5<br>131 D:<br>126 D:<br>154 D:                                                                      | us<br>iraw<br>7 550 DP<br>8.67<br>9.31<br>11.25                                                    | Cle<br>F3<br>N107<br>C35                                                     | Bad<br>ar<br>N4<br>E108<br>E36                                                      | ¥5<br>K109<br>137                                                     | 4417<br>4340<br>5792                                                                  | Unclassifi<br>Qu                       |
| Phi:         -130         Psi:         126         D:         9.31         N107         E108         K109         4340           Phi:         -130         Psi:         154         D:         11.25         C35         E36         E37         5792           Phi:         -118         Psi:         145         D:         11.36         V164         K165         E166         ospA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ♥ Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792<br>♥ Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -116 +<br>Phev<br>Good<br>Prev<br>Prev<br>Phi: -1<br>Phi: -1<br>Phi: -1                                                       | /- 11<br>Next<br>= E58, Tri<br>09 Psi:<br>31 Psi:<br>30 Psi:<br>18 Psi:                                                                                                                                                              | Ambiguo<br>Rec<br>iptet K5<br>131 D:<br>126 D:<br>154 D:<br>154 D:                                                           | us<br>Iraw<br>7 E58 D<br>8.67<br>9.31<br>11.25<br>11.36                                            | Cle<br>F3<br>N107<br>C35<br>V164                                             | Bad<br>ar<br>N4<br>E108<br>E36<br>K165                                              | Y5<br>K109<br>I37<br>E166                                             | 4417<br>4340<br>5792<br>ospA                                                          | Unclassifi<br>Qu<br>_ D                |
| <ul> <li>Phi: -131 Psi: 126 D: 0.31 N107 E108 K109 4340</li> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 T37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 R72 I73 vegf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ■ Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792<br>■ Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA<br>■ Phi: -94 Psi: 124 D: 11.80 M71 R72 I73 vegf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -116 +<br>Phe<br>Good<br>Prev<br>Residu<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1                                | /- 11<br>Next<br>2 E58, Tri<br>09 Psi:<br>31 Psi:<br>30 Psi:<br>18 Psi:<br>94 Psi:                                                                                                                                                   | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>145 D:<br>124 D:                                                             | us<br>Iraw<br>7 558 D?<br>8.67<br>9.31<br>11.25<br>11.36<br>11.80                                  | Cle<br>F3<br>N107<br>C35<br>V164<br>M71                                      | Bad<br>ear<br>N4<br>E108<br>E36<br>K165<br>R72                                      | Y5<br>K109<br>I37<br>E166<br>I73                                      | 4417<br>4340<br>5792<br>ospA<br>vegf                                                  | Unclassifi<br>Qu                       |
| Phi:       131       Psi:       126       D:       9.31       N107       E108       K109       4340         P Phi:       -130       Psi:       154       D:       11.25       C35       E36       I37       5792         P Phi:       -118       Psi:       145       D:       11.36       V164       K165       E166       ospA         P Phi:       -94       Psi:       124       D:       11.80       M71       R72       I73       vegf         P Phi:       -114       Psi:       133       D:       11.74       I75       Q76       S77       have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 R72 I73 vegf</li> <li>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 hav</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -116 +<br>Phe<br>Good<br>Prev<br>Residu<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1                     | 4 11<br>Next<br>2 E50, Tri<br>09 Psi:<br>31 Psi:<br>30 Psi:<br>18 Psi:<br>14 Psi:                                                                                                                                                    | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>145 D:<br>124 D:<br>133 D:                                                   | us<br>Iraw<br>8.67<br>9.31<br>11.25<br>11.36<br>11.80<br>11.94                                     | Cle<br>F3<br>N107<br>C35<br>V164<br>M71<br>I75                               | Bad<br>ear<br>N4<br>E108<br>E36<br>K165<br>R72<br>Q76                               | Y5<br>K109<br>I37<br>E166<br>I73<br>S77                               | Save<br>4417<br>4340<br>5792<br>ospA<br>vegf<br>hav                                   | Unclassifi<br>Qu                       |
| Phi: -131 Psi: 126 D: 9.31 N107 E108 K109 4340<br>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792<br>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA<br>Phi: -94 Psi: 124 D: 11.80 M71 K72 I73 vegf<br>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 hav<br>Phi: -116 Psi: 126 D: 13.09 T102 E103 F104 apo_lfabp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 osp4</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 K72 I73 vegf</li> <li>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 Hav</li> <li>Phi: -116 Psi: 126 D: 13.09 T102 E103 F104 apo_lfabp</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -116 +<br>Phev<br>Good<br>Prev<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1                   | <ul> <li>4 11</li> <li>Next</li> <li>E58, Tri</li> <li>9 Psi:</li> <li>30 Psi:</li> <li>30 Psi:</li> <li>31 8 Psi:</li> <li>94 Psi:</li> <li>14 Psi:</li> <li>16 Psi:</li> </ul>                                                     | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>154 D:<br>124 D:<br>124 D:<br>133 D:<br>126 D:                               | us<br>Iraw<br>8.67<br>9.31<br>11.25<br>11.36<br>11.80<br>11.94<br>13.09                            | Cle<br>F3<br>N107<br>C35<br>V164<br>M71<br>I75<br>T102                       | Bad<br>aar<br>N4<br>E108<br>E36<br>K165<br>R72<br>Q76<br>E103                       | Y5<br>K109<br>I37<br>E166<br>I73<br>S77<br>F104                       | 4417<br>4340<br>5792<br>ospA<br>vegf<br>hav<br>apo_1                                  | Unclassifi<br>Qu<br>                   |
| Phi:       131       Psi:       126       D:       9.31       N107       F108       H09       4340         P Phi:       -130       Psi:       154       D:       11.25       C35       E36       I37       5792         P Phi:       -118       Psi:       145       D:       11.36       V164       K165       E166       ospA         P Phi:       -34       Psi:       124       D:       11.80       M71       R72       I73       vegf         P Phi:       -14       Psi:       133       D:       11.94       I75       Q76       S77       hav         P Phi:       -116       Psi:       132       D:       13.09       T102       E103       F104       apo                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 K72 I73 vegf</li> <li>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 hav</li> <li>Phi: -116 Psi: 126 D: 13.09 T102 E103 F104 apo_lfabp</li> <li>Phi: -120 Psi: 123 D: 13.10 L117 E118 M119 5579</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -116 + Ph<br>Good<br>Prev<br>Prev<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1                | <ul> <li>A 11</li> <li>Next</li> <li>E58, Tri</li> <li>94 Psi:</li> <li>94 Psi:</li> <li>14 Psi:</li> <li>16 Psi:</li> <li>20 Psi:</li> </ul>                                                                                        | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>154 D:<br>124 D:<br>124 D:<br>123 D:<br>123 D:                               | us<br>iraw<br>8.67<br>9.31<br>11.25<br>11.36<br>11.80<br>11.94<br>13.09<br>13.10                   | Cle<br>F3<br>N107<br>C35<br>V164<br>M71<br>I75<br>T102<br>L117               | Bad<br>sar<br>N4<br>E108<br>E36<br>K165<br>R72<br>Q76<br>E103<br>E118               | ¥5<br>K109<br>I37<br>E166<br>I73<br>S77<br>F104<br>M119               | 4417<br>3ave<br>4340<br>5792<br>ospA<br>vegf<br>hav<br>apo_1<br>5579                  | Unclassifi<br>Qu<br>- D                |
| Phi:       -131       Psi:       126       D:       9.31       N107       E108       K109       4340         P Phi:       -130       Psi:       154       D:       11.25       C35       E36       137       5792         P Phi:       -118       Psi:       145       D:       11.36       V164       K165       E166       ospA         P Phi:       -94       Psi:       124       D:       11.80       M71       R72       I73       vegf         P Phi:       -14       Psi:       133       D:       11.94       I75       Q76       S77       hav         P Phi:       -116       Psi:       126       D:       13.09       T102       E103       F104       apo                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 R72 I73 vegf</li> <li>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 hav</li> <li>Phi: -116 Psi: 126 D: 13.09 T102 E103 F104 apo_lfabp</li> <li>Phi: -120 Psi: 123 D: 13.10 L117 E118 M119 5573</li> <li>Phi: -118 Psi: 135 D: 13.25 E58 I59 I60 gyrase8</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -116 +<br>Phi<br>Good<br>Prev<br>Residu<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1          | <ul> <li>4 11</li> <li>Next</li> <li>e E59, Tri</li> <li>09 Psi:</li> <li>31 Psi:</li> <li>30 Psi:</li> <li>30 Psi:</li> <li>31 Psi:</li> <li>30 Psi:</li> <li>14 Psi:</li> <li>16 Psi:</li> <li>18 Psi:</li> <li>18 Psi:</li> </ul> | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>145 D:<br>124 D:<br>133 D:<br>126 D:<br>123 D:<br>126 D:<br>123 D:<br>125 D: | us<br>iraw<br>8.67<br>9.31<br>11.25<br>11.36<br>11.80<br>11.94<br>13.09<br>13.10<br>13.25          | Cle<br>F3<br>N107<br>C35<br>V164<br>M71<br>I75<br>T102<br>L117<br>E58        | Bad<br>ear<br>N4<br>E108<br>E36<br>K165<br>R72<br>Q76<br>E103<br>E118<br>I59        | ¥5<br>K109<br>I37<br>E166<br>I73<br>S77<br>F104<br>M119<br>I60        | 4417<br>Save<br>4417<br>4340<br>5792<br>ospA<br>vegf<br>hav<br>apo_1<br>5579<br>gyras | Unclassifi<br>Qu<br>- D<br>fabp<br>seB |
| Phi:       -130       Psi:       134       D:       9.31       N107       F108       K109       4340         P Phi:       -130       Psi:       134       D:       11.25       C35       E36       I37       5792         P Phi:       -130       Psi:       145       D:       11.36       V164       K165       E166       ospA         P Phi:       -141       Psi:       124       D:       11.30       N71       R72       I73       vegf         P Phi:       -141       Psi:       124       D:       11.30       N71       R72       I73       vegf         P Phi:       -116       Psi:       123       D:       11.94       I75       Q76       S77       hav         P Phi:       -116       Psi:       123       D:       13.09       T102       E103       F104       apo_1       F16p         P Phi:       -118       Psi:       123       D:       13.10       L117       E118       M119       S579         P Phi:       -118       Psi:       135       D:       13.29       E58       I50       I50       Y57       4267 | <ul> <li>Phi: -130 Psi: 154 D: 11.25 C35 E36 I37 5792</li> <li>Phi: -118 Psi: 145 D: 11.36 V164 K165 E166 ospA</li> <li>Phi: -94 Psi: 124 D: 11.80 M71 R72 I73 vegf</li> <li>Phi: -114 Psi: 133 D: 11.94 I75 Q76 S77 hav</li> <li>Phi: -116 Psi: 126 D: 13.09 T102 E103 F104 apo_1fabp</li> <li>Phi: -120 Psi: 123 D: 13.10 L117 E118 M119 5579</li> <li>Phi: -118 Psi: 126 D: 13.25 E58 I59 I60 gyrase8</li> <li>Phi: -105 Psi: 126 D: 13.39 T55 I56 V57 4267</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -116 + Ph<br>Good<br>Prev /<br>Residu<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1<br>Phi: -1 | /- 11<br>Next<br>09 Psi:<br>31 Psi:<br>30 Psi:<br>18 Psi:<br>94 Psi:<br>14 Psi:<br>16 Psi:<br>20 Psi:<br>18 Psi:<br>18 Psi:<br>20 Psi:                                                                                               | Ambiguo<br>Rec<br>131 D:<br>126 D:<br>154 D:<br>124 D:<br>124 D:<br>124 D:<br>126 D:<br>126 D:<br>123 D:<br>125 D:<br>125 D: | us<br>iraw<br>8.67<br>9.31<br>11.25<br>11.36<br>11.90<br>11.94<br>13.09<br>13.10<br>13.25<br>13.39 | Cle<br>F3<br>N107<br>C35<br>V164<br>M71<br>I75<br>T102<br>L117<br>E58<br>T55 | Bad<br>aar<br>N4<br>E108<br>E36<br>K165<br>R72<br>Q76<br>E103<br>E118<br>I59<br>I56 | ¥5<br>K109<br>I37<br>E166<br>I73<br>S77<br>F104<br>M119<br>I60<br>¥57 | 4417<br>4340<br>5792<br>ospA<br>vegf<br>hav<br>apo_1<br>5579<br>gyras<br>4267         | Unclassifi<br>Qu<br>= D                |

| M1   | Q2   | Q3          | V4         | R5   | QG   | 87         | P8   | Q9   | S10        |
|------|------|-------------|------------|------|------|------------|------|------|------------|
| L11  | T12  | V13         | W14        | E15  | G16  | E17        | T18  | A19  | 120        |
| L21  | N22  | .c23        | S24        | Y25  | E26  | N27        | S28  | A29  | F30        |
| D31  | ¥32  | F33         | P34        | W35  | ¥36  | Q37        | Q38  | F39  | P40        |
| G41  | E42  | G43         | P44        | A45  | L46  | L47        | 148  | S49  | 150        |
| L51  | 852  | V53         | <b>S54</b> | N55  | K56  | K57        |      | D59  | G60        |
| R61  | F62  | <b>T6</b> 3 | 164        | F65  | F66  | N67        | K68  | R69  | E70        |
| K71  | K72  | L73         | <b>S74</b> | 175  | H76  | 177        | A78  | D79  | <b>S80</b> |
| Q81  | P82  | G83         | D84        | S85  | A86  | <b>T87</b> | ¥88  | F89  | c90        |
| A91  | A92  | 893         | A94        | S95  | F96  | G97        | D98  | N99  | S10        |
| K101 | L102 | 1103        | W104       | G105 | L106 | G107       | T108 | S109 | LTT        |
| VI11 | V112 | N113        | P114       |      |      |            |      |      |            |

| HN(i-1) |                         |
|---------|-------------------------|
| N(i-1)  |                         |
| co(i-1) |                         |
| CA(i-1) | nm inn al n             |
| CB(i-1) |                         |
| HA(i-1) | I_100 _ 0.0 _ 0.0 _ 0.0 |
| HN(i)   | <u> </u>                |
| N(i)    |                         |
| CO(i)   | 0 0100 0                |
| CA(i)   |                         |
| CB(i)   |                         |
| HA(i)   |                         |
| N(i+1)  |                         |
| N(i+1)  | 100.001000              |
| :0(i+1) |                         |
| A(i+1)  |                         |
| :B(i+1) | <u> </u>                |
| IA(i+1) |                         |



#### **Chemical shift: a structural information content**

www.pnas.org/cgl/dol/10.1073/pnas.0800256105

PNAS | March 25, 2008 | vol. 105 | no. 12 | 4685-4690

# Consistent blind protein structure generation from NMR chemical shift data

Yang Shen\*, Oliver Lange<sup>†</sup>, Frank Delaglio\*, Paolo Rossi<sup>‡</sup>, James M. Aramini<sup>‡</sup>, Gaohua Liu<sup>‡</sup>, Alexander Eletsky<sup>§</sup>, Yibing Wu<sup>§</sup>, Kiran K. Singarapu<sup>§</sup>, Alexander Lemak<sup>1</sup>, Alexandr Ignatchenko<sup>1</sup>, Cheryl H. Arrowsmith<sup>1</sup>, Thomas Szyperski<sup>§</sup>, Gaetano T. Montelione<sup>‡</sup>, David Baker<sup>†∥</sup>, and Ad Bax<sup>\*|</sup>

\*Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; \*Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195; \*center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, and Robert Wood Johnson Medical School, Piscataway, NJ 08854; \*Departments of Chemistry and Structural Biology and Northeast Structural Genomics Consortium, University at Buffalo, State University of New York, Buffalo, NY 14260; and \*Ontario Cancer Institute, Department of Medical Biophysics, and Northeast Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada M5G IL5

Protein NMR chemical shifts are highly sensitive to local structure. A robust protocol is described that exploits this relation for *de novo* protein structure generation, using as input experimental parameters the  $^{13}C^{o}, ^{13}C^{i}, ^{15}N, ^{14}^{o}$  and  $^{14}N$  NMR chemical shifts. These shifts are generally available at the early stage of the traditional NMR structure determination process, before the collection and analysis of structural restraints. The chemical shift based structure determination protocol uses an empirically optimized procedure to select protein fragments from the Protein Data Bank, in conjunction with the standard ROSETTA Monte Carlo assembly and relaxation methods. Evaluation of 16 proteins, varying in size from 56 to 129 residues, yielded full-atom models thave 0.7-1.8 Å root mean square deviations for the backbone atoms relative to the experimentally determined x-ray or NMR structures. The strategy also has been successfully applied in a 51.4 kDa, whose conventional NMR structure determination was conducted in parallel by the Northeast Structural Genomics Consortium. This protocol potentially provides a new direction for high-throughput NMR structure determination.



Fig. 4. Results from blind CS-ROSETTA structure generation for four structural genomics targets (Table 2). The remaining five are in SI Fig. 12. (A-D) i Superposition of lowest-energy CS-ROSETTA models (red) with experimental NMR structures (blue), with superposition optimized for ordered residues, as a defined in the footnote to SI Table 5. (E-H) Plots of rescored (Eq. 1) ROSETTA all-atom energy versus C<sup> $\alpha$ </sup> rmsd relative to the lowest-energy model (bold dot on i vertical axis). (A and E) StR82. (B and F) RpT7. (C and G) VfR117. (D and H) NeT4.

#### **Chemical shift: a tool for interactions**



# Chemical shift and chemical exchange (µs-ms)



#### **Chemical shift: a tool for interactions**



Kd ~ 100-300 μM

Titration de BlaI par ADN

DNA

**BlaI-NTD** 



## **Chemical shift: a tool for interactions**







 $W_0 = \mu_0 \mu^2 / (2h\lambda^3) = 10^{-21} \text{ s}^{-1} (^1\text{H} @ 11.7 \text{ T})$ 

Excitation of spin-state

Spontaneous emission is negligible at NMR frequencies! (W<sub>0</sub> = 10<sup>8</sup> s<sup>-1</sup> for electronic transitions at optical frequencies)



# **Relaxation: an interaction tool**

#### Interaction Monastrol/EG5



#### **Relaxation: an interaction tool**



$$K_{d} = \frac{P_{free} \bullet M_{free}}{PM} = \frac{F_{free}^{2}}{1 - F_{free}} \bullet M_{0}$$

#### **Relaxation: a dynamical information**





**Fig. 2** a, Generalized order parameters (5') and b, the chemical exchange contribution to  $1/T_2$ ( $R_p$ ), plotted as a function of residue number for the two complexes ( $\Psi$ ) DMP323 using three relaxation parameters,  $T_1$ ,  $T_2$  at 500 MHz and NOE at 600 MHz: (**•**) DMP323 using four relaxation parameters,  $T_1$ ,  $T_2$  at 500 MHz a parameters,  $T_1$ ,  $T_2$  at 500 MHz ar a Mobility: (**•**) DMP323 using four relaxation



<sup>1</sup> L. Nicholson, T. Yamazaki, D.A. Torchia, S. Grzesiek, A. Bax, S.J. Stahl, J.D. Kaufman, P.T. Wingfield, P.Y.S. Lam, P.K. Jadhav, C.N. Hodge, P.J. Domaille, and C.-H. Chang: Flexibility and function in HIV-1 protease. Nature Structural Biology 2, 274-279, 1995.





#### Scalar couplings: a structural information content





J. Wang, A.Bax, J. Am. Chem. Soc., 1996, 118, 2492

#### Scalar couplings: a structural information content

#### Oligosaccharide sugar-pucker



NMR Spectroscopy of RNA B. Furtig, C. Richter, J. Wohnert and H. Schwalbe *ChemBioChem*, **2003**, <u>4</u>, 936 - 962



#### Scalar couplings: a structural information content



Cordier, Grzesiek, J. Am. Chem. Soc., 1999, 1601-1602





9.2

9.4

9.6

9.0 1H<sub>N</sub> 8.8

ppm

8.4

8.6

# **Dipolar interactions**



#### **Dipolar interactions: a structural information content**





#### **Dipolar interactions: a structural information content**





#### **Dipolar interactions: a structural information content**



Figure 17. A) Schematic representation of the sequential assignment strategy in helical A-form RNA for nonexchangeable protons. The arrows show the intraresidual NOE connectivities between the aromatic and the sugar protons H1' - H3' and the sequential NOE correlation between the H3' - H6, H8 protons and the H5 - H1' protons. The sequential assignment of the helical A-form conformation is possible by determination of these NOE cross-peaks. In addition to the exchangeable protons, only the intercatenar NOE interactions between the adenine H2 and H1' of the corresponding RNA strand give information about the helical conformation. B) An example for the NOESY assignment procedure shown for the cUUUUg loop RNA. The NOESY spectrum was recorded in  $D_3O$  at 600 MHz and the mixing time was 300 ms. Annotation by using two residues indicates connectivities due to sequential NOE contacts and annotation with one nucleotide indicates intraresidual NOE interactions.

B. Furtig, C. Richter, J. Wohnert and H. Schwalbe ChemBioChem, **2003**, <u>4</u>, 936 - 962

#### **Dipolar interactions: a structural information content**



#### **Dipolar interactions: a structural information content**



Calculation of the structure of the theophylline-binding RNA aptamer using <sup>13</sup>C–<sup>1</sup>H residual dipolar couplings and restrained molecular dynamics.

The panels (i–iii) represent the lowest target-function conformations from the nOe/J-coupling ensemble: (i) superposed using all the nucleic acids; (ii) superposed using the 30–50 stem I region; and (iii) superposed using the stem II—loop region. (iv) The structural ensemble represents the nOe/J-coupling/RDC ensemble superposed on all nucleic acids.

#### **Dipolar interactions: an intermolecular interaction tool**



 $Q_{obs} = P_{bound} Q_{bound} + P_{free} Q_{free} + Q_{ex}$ 

# **Dipolar interactions: an intermolecular interaction tool**



# **Dipolar interactions: an intermolecular interaction tool**



#### **Dipolar interactions: an intermolecular interaction tool**



#### **Dipolar interactions: an interaction tool**



# **Dipolar interactions: a dynamical information content**



# Conclusion

#### Chemical shift information:

- a structural information content
- a powerful tool to follow local changes; specific interest in functional studies

#### **Relaxation parameters:**

- a measure of the dynamics in the ps-ns time-scale; an access to motion
- a tool for interaction studies

#### Scalar couplings:

- a unique tool to transfer magnetization for the spectroscopist
- an angular information

#### Dipolar interactions:

- an orientational and distance information
- a source of intermolecular contact information
- $\bullet$  a source of dynamical information in the µs-ms time-scale

