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How can we obtain structural information?

 A question of interaction between radiation and matter

 Radiations can be:
➢ Photons (electro-magnetic wave: light, X-rays)

➢ Electrons

➢ Neutrons

 Matter
➢ Your (macro)molecule under study

 Atoms forming your molecule
• H, C, N, O, S, ... 

Illustrations dapted from Wikipedia
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Possible approaches

 “Imaging” techniques
➢ Visible light microscopy

➢ Electron microscopy

➢ X-ray, neutron or electron crystallography

 Localization technique
➢ Super-resolution microscopy

 Spectroscopic techniques
➢ NMR

➢ SAXS

300 nm 

50 nm 
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Image
Object

Visible light microscopy

 Source light (radiation): photons or electromagnetic wave
➢ Wave length: 0.3 – 0.8 µm

 Object (matter): absorb and re-emit incident light in all directions
➢ More or less absorption

➢ some time wave length dependent (color)

 Lens: focuses light emitted by the object on the image plane
➢ The light emitted by one point of the object is focused on one point of the detector

 Image: eyes, camera, detector, film, ...
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x

θ

Why can't we see molecule with visible light?

 Be because of the wave nature of light
➢ Diffraction of light by a disk when the disk size of the same order of magnitude than 

the wave length:
 The angle at which the 1st minimum occurs is given by:

 Rayleigh criterion

➢ n.sinθ is the numerical aperture of the lens
 Max ≈ 1.4 – 1.6 

 Maximum resolution with visible light
 ≈ 0.25 µm
 Enough for cells
 Not enough for molecules

d=1.22
λ

2n sinθ
≈

λ
2 sinθ

  (in air)

sinθ ≈1.22
λ
d

  (far from the aperture, d diameter of the aperture)

Airy disk
The best focussed spot 
of light made by a lens of 
circular aperture is limited 
by the diffraction light
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How to increase resolution?
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Atomic resolution with photons?

 Decrease the wavelength
➢ For atomic resolution

 d ~ 1 Å  => λ ≤ 2 Å

➢ Use photons in the domain of X-rays
 Typically: for λ = 1 Å, E = hν = hc/λ ≈ 12.4 keV 

 Do X-rays interact with atoms?
➢ Yes, X-ray photons with the electronic cloud of an atom

 Photoelectric effect (absorption of a photon and emmision of an elctron)
 Compton Scatering (inelastic scattering between a photon and an electron)
 Electron/Positron pair production (only high energy photon > 1MeV)
 Rayleigh scattering (Photon eleastic scattering by atomic electons)
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How a photon is scattered by an atom ?

 Elastic scattering (no loss of energy, wavelength is conserved)
➢ Rayleigh scattering: bound atomic electrons

➢ Thomson scattering: free electrons (photon energy >> electron binding energy)
 Carbon atom E(1s) = -1013 eV, E(2s,2p) = -36 eV  to be compared to 7 to 15 keV for X-

ray photons

➢ Photon energy should differ from element absorption edges

 The wave description of X-ray photons (electromagnetic wave) is fine to 
explain the phenomenon (classical model)

➢ In an electric field     a charge e feels a force:
 Thus, the electric field of the electromagnetic wave will induce movement of nucleus and 

electrons
 Due to the non-relativistic velocity of atomic electrons, the Lorentz force induced by the 

magnetic field of the electromagnetic wave                         can be neglected

F⃗=e . E⃗E⃗

F⃗=e . v⃗∧B⃗
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Ocillating dipole

 In an electric field     a charge e feels a force:

 The force will induce an acceleration of both the electron and the nucleus
➢

•

•

• Since mp and mn >> me one can neglect the movement of the nucleus

 The dipole induced by the electric field is:

E⃗ F⃗=e . E⃗

F⃗=m . γ⃗  => γ⃗e=−e .
E⃗
me

 and γ⃗n=+ Ze.
E⃗

(Zmp+ (A−Z)mn)

d⃗=Ze . r⃗
(with r⃗  vector between center of mass of electrons and nucleus)

E⃗=E⃗0 cos [ωt ]⏟
ocillating electric field

⇒ d⃗=−(Ze2 E⃗0

me ω2 )cos [ωt ]
⏟

ocillating dipole

∂
2 d⃗

∂ t2 =−Ze. γ⃗e=Ze2 .
E⃗
me

E⃗

F⃗
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Oscillating dipole and emitted wave

E⃗

d⃗=Ze.( r⃗n− r⃗e)

The negatively charged electronic cloud 
and the positively charged nucleus 
become an oscillating dipole, thus 
emitting a spherical electromagnetic 
wave of same wavelength with a phase 
shift of π

The incident electromagnetic wave induce 
the oscillation of the electronic cloud 
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Accessible information?

 Each atoms is emitting an electromagnetic wave (photon):
➢ Amplitude proportional to Z (number of electrons)

➢ Phase determined by the phase of the incident wave, at the position of the atom

 => In principle, access to the electron density

 What about other beams?
➢ Electrons

➢ Neutrons
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Other particles to probe matter?

 Is photon (electromagnetic wave) the unique probe to see molecule?

 In 1924, Louis de Broglie proposed that all elementary particles can 
behave both as a wave and as a particle

➢ Any particle can be used to probe matter if
 the associated wave length             is appropriate
 It interact with matter

➢ What is the wave length of an elementary particle?
 Photon (no mass): 

 Particle (mass ≠ 0):

 with h (Plank constant)=6.6257 10−34 J.s  , p : momentum  , ν :frequency

λ=
h
p

E=
1
2

mv2  , p=mv  , λ=
h

mv

E=hν=h
c
λ

 , p=
hν
c
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Energies and wave length

 Electromagnetic waves / photons (1901, Röntgen)
 Photon energy: 

 Electrons (1897, Thomson)
 Negatively charged particle (q =  1.6 10-19 C, me = 9.1091 10-31 kg)

 Neutrons (1932, Chadwick)
 Neutral particle (mn = 1.6749 10-27 kg)

E=hν=h
c
λ

 →  7 keV < E < 17 keV or 1.7 Å > λ > 0.7 Å

E=
1
2

mn v2  , λ=
h

mn v
 →  λ=1.5 Å for v = 2600 m/s and E=3.6 10−2 eV

E=
1
2

me v2  , λ=
h

me v
 →  λ=1.2 Å for v = 6000 km/s and E=100 eV

in practice 100 keV < E < 300 keV and 0.037 Å > λ > 0.019 Å
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Electrons

 Charged particle
➢ “Sense” the electrostatic potential

 Strongly interact with matter
➢ About 104 times more than X-rays

 Elastic scattering represents 25% of scattered 
electrons

➢ Only 5% for X-rays

Henderson, Quart. Rev. Biophys., 1995
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Electrons

 Optimal thickness of sample
➢ All electrons are absorbed if sample thickness 

exceed the µm

➢ For X-rays, about 98% of the photons go 
through a 100 µm thick sample without any 
interaction

Illustrations taken from J.P. Abrahams
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Electrons

 Strongly interact with matter
➢ Elastic interaction with: 

 Atomic electron (small energy transfer)
• No change in trajectory

 Nucleus (Rutherford or Coulomb scattering)
• Main contribution to elastic scattering

➢ Inelastic interaction
 Bremsstrahlung (higher enrgies)
 Absorption (lower energies)

Illustrations taken from J.P. Abrahams
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Electrons

 Atomic scattering factor for electrons depends on Z
➢ Scattering probability ~ Z4/3 (for X-rays, scattering probability ~Z2)  

 Also strongly depends on the atomic charge

 => access to a combination of electron density and charge information

Illustrations taken from K. Yonekura
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Neutrons

 No electromagnetic interaction
➢ Penetrate matter easily

 Different type of neutrons
 Cold neutrons:  E<0.0038 eV
 Thermal neutrons:  0.0038 eV < E < 0.5 eV => used for diffraction and SANS experiment
  Epithermal or resonance neutrons: 0.5 eV<E<100 keV 
  Fast neutrons: 100 keV<E<10MeV 
  Relativistic neutrons: E>10MeV

➢ Elastic interaction with nucleus: E < 1MeV

➢ Inelastic scattering by nucleus: E > 1MeV

➢ Induced fission  
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Neutrons: differences and similarities with X-
rays

 Neutrons interact with nucleus
➢ We observe nucleus and not electron density

 Proton can be observed

➢ Scattering cross-section comparable to that of X-rays

➢ Variable scattering cross section depending on the type of atom

 Nuclei are very small (10-15m) compare to the wave length (10-10 m)
➢ Quasi a point

 Impact on the atomic form factor
• Spherical electron density



 For neutron 
 No decrease with s or resolution

 => access to spatial distribution of nuclei

f at ( s⃗ )=f at(∣⃗s∣)=2 ∫
r=0

∞

ρ(r)sin
(2πsr)

s
dr

f at (0)=Z
f nuc(s)=σscat
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Different point of views

X-ray photons NeutronsElectrons
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Why can't we get directly the image of the 
molecule with X-rays?

 Problem: we have no lens for X-ray photons
➢ No image on the detector, but a scattering spectra

 With a lens
➢ All radiation arriving on one point of the detector come from one point on the object

Object

ImageSource 
of light
Source 
of light
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Scheme for a scattering spectrum

Object

Diffusion/diffraction 
spectra

Source 
of light

 Without a lens
➢ Radiation arriving on one point of the detector come from all points on the object

• It the sum of waves emitted by each point of the object
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What can we do with a scattering spectra?

 What is the link between the scattering spectra and the molecule?

 Can we still get a image of the molecule?

 Mathematical representation of an electromagnetic wave?
➢ Wave generated by an oscillating dipole

E⃗ cos[ωt – q⃗ . r⃗ ]  with ω=2 πν  and |q⃗|=2
π
λ

ω: angular frequency, ν : frequency, λ : wave length, q⃗ : wave vector or momentum
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Reminder about waves

 Fresnel representation of waves
➢ Electric field: 

➢ A phase shift φ:

E⃗0 cos [ωt – q⃗0 . r⃗ ]=E⃗0 exp [i(ωt – q⃗0 . r⃗ )]

E⃗0 exp [i (ωt – q⃗0 . r⃗+ φ)]=E⃗0 exp[i (ωt – q⃗0 . r⃗ )] . exp[ iφ]

0
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Reminder about waves

E⃗0 cos [ωt – q⃗0 . r⃗ ]=E⃗0 exp [i(ωt – q⃗0 . r⃗ )]

E⃗0 exp [i (ωt – q⃗0 . r⃗+ φ)]=E⃗0 exp[i (ωt – q⃗0 . r⃗ )] . exp[ iφ]

 Fresnel representation of waves
 Electric field: 
 A phase shift φ:
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Reminder about waves

 Sum of two waves are simple to express

E⃗0 exp [i (ωt – q⃗0 . r⃗ )]+ E⃗0 exp [i (ωt – q⃗0 . r⃗ )] . exp [iφ ]=E⃗0 exp [i(ωt – q⃗0 . r⃗ )].(1+ exp [iφ ])

 φ = 0° (or 2π) => in phase => constructive interference

 φ = 180° (or π) => out of phase => destructive interference
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Scattering by one atom

 The planar incident wave induces the emission of a spherical wave of same 
wavelength and with a π phase shift 
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Scattering by one atom

D
ét

ec
te

ur

4        3       2       1

Pic à 1



2 juin 2018 Ecole d'Oléron 2018 - D. Housset 29

Scattering by two atoms

 The two atoms are emitting a spherical electromagnetic wave. If the two 
atoms are not mobile and close by, the two waves interfere
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Scattering by two atoms

D
ét

ec
te

ur

Intensité mesurée

4       3       2       1

Pic à 4
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Scattering by numerous atoms

 All atoms are emitting a spherical electromagnetic wave. 
➢ In P, you get the sum of the waves emitted by all atoms. The 

phase of the wave depend on the position of the atom

 What is this sum?
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Scattering by numerous atoms

➢ A wave is described by its wave vector 

➢ or is scattering vector 

➢ The incident wave is : E⃗0 exp [i (ωt – q⃗0 . r⃗ )]

q⃗  (∣⃗q∣=
2π
λ

)

s⃗=
q⃗
2π

 (∣⃗s∣=
1
λ
)

➢ The wave emitted by atom J in P is:

E⃗0 exp [ i(ωt – q⃗0 . r⃗ J)]⏟
incident wave at atom J

.
f J

|⃗r−r⃗ J|⏟
∝  scattering factor of atom J

. exp [– i q⃗1 .( r⃗− r⃗ J)]⏟
dependence with distance from atom J

. exp [ iπ ]⏟
π phase shift
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Scattering by numerous atoms

 The wave emitted by all atoms in P is jus the sum:

∑
J

E⃗0 exp [ i (ωt – q⃗0 . r⃗ J)] .
f J

|⃗r− r⃗ J|
. exp [– i q⃗1 .( r⃗−r⃗ J)] . exp [ iπ ]

E⃗0

∣⃗r− r⃗0∣
exp [ i(ωt – q⃗1 . r⃗ )]. exp [iπ ].∑

J

f J . exp [i (q⃗1−q⃗0). r⃗ J ]

 If we define the scattering vector: s⃗= s⃗1− s⃗0=
1
2π
.(q⃗1−q⃗0)

E⃗0

|⃗r− r⃗0|
exp [2 iπ (νt – s⃗1 . r⃗ )] . exp [ iπ ]

⏟
depend on the incident wave and position P

. ∑
J

f J . exp [2 iπ s⃗ . r⃗ J ]
⏟

Fourier transform of the distribution of scattering factors

➢ If sample size << distance sample-detector                            it becomes:(|r⃗− r⃗J|≈|r⃗− r⃗0|)
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Scattering by numerous atoms

 The structure factor is
➢ It is the Fourier transform of the distribution of electron, i.e. the electron density:

➢ It is a complex number (amplitude and phase)

 The electron density can be calculated by the reverse Fourier transform:

F( s⃗ )=∑
J

f J . exp [2iπ( s⃗ ). r⃗J ]

F ( s⃗ )=∑
J

f J . exp [2iπ( s⃗ ). r⃗ J ]=∫
vol

ρ( r⃗ )exp [2iπ r⃗. s⃗ ] . d r⃗

ρ( r⃗ )=∑
J

f J . δ( r⃗− r⃗J)= ∫
rec.vol.

F( s⃗ )exp [−2iπ r⃗. s⃗ ]. d s⃗

➢ The detector measures the intensity of the scattered wave
 This intensity is proportional to the square modulus of structure factor

I( s⃗ )∝∣F( s⃗ )∣2
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What if the sample is a crystal?

 A crystal can be described by a unit cell
➢ Three vector              define this unit cell

 Unit cells (identical content) are piled up in the 3 directions of space

a⃗ , b⃗ , c⃗
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What if the sample is a crystal?

➢ The general form of the structure factor is:

F( s⃗ )= ∫
vol sample

ρ( r⃗ )exp [2iπ r⃗. s⃗ ] .d r⃗

➢ If the sample is a crystal, it can be described as a pile of Ncell unit cells

F( s⃗ )=∑
n=1

Ncell

∫
vol cell

ρ( r⃗+ r⃗ n)exp [2iπ( r⃗+ r⃗n). s⃗ ].d r⃗

with : r⃗n=n1 . a⃗+ n2 . b⃗+ n3 . c⃗  and ρ ( r⃗+ r⃗ n)=ρ ( r⃗ )

F( s⃗ )=∑
n=1

Ncell

exp [2iπ n1 . a⃗ . s⃗ ]exp [2iπ n2 . b⃗ . s⃗ ]exp [2iπ n3 . c⃗ . s⃗ ]
⏟

factor ≈ 0, except if s⃗ satisfy Laue equations : a⃗ . s⃗=h, b⃗ . s⃗=k , c⃗ . s⃗ =l⇒ factor=Ncell

. ∫
vol cell

ρ( r⃗ )exp[2iπ r⃗ . s⃗ ] .d r⃗
⏟

Fourier transform of electrondensity of the unit cell

➢ There is significant X-ray scattering only in specific, discrete direction => diffraction 
phenomenon
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X-ray scattering by a crystal

➢ In directions that satisfy Laue equation, the structure factor is the one of the unit 
cell, multiplied by the number of cells in the crystal.

F( s⃗)=Ncell . ∫
vol cell

ρ( r⃗ )exp [2iπ r⃗ . s⃗ ]. d r⃗
⏟

Fourier transform of electron density of the unit cell

➢ The crystal is a signal amplifier, in direction where you have signal:

I( s⃗ )∝Ncell
2 .( ∫

vol cell

ρ( r⃗ )exp [2iπ r⃗ . s⃗ ] . d r⃗ ).( ∫
vol cell

ρ( r⃗ )exp [−2iπ r⃗ . s⃗ ] .d r⃗ )
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How we get the “image” from a diffraction 
spectra

 In the case of a crystal:

      statisfies the Laue equations

      is a vector of a lattice, named reciprocal lattice 

s⃗ a⃗ . s⃗=h , b⃗ . s⃗=k , c⃗ . s⃗=l

s⃗=h . a⃗∗
+ k . b⃗∗

+ l . c⃗∗
with a⃗∗

=
b⃗∧ c⃗

a⃗ . b⃗∧ c⃗
 , b⃗∗

=
c⃗∧ a⃗

a⃗ . b⃗∧ c⃗
 , c⃗∗

=
a⃗∧b⃗

a⃗ . b⃗∧ c⃗

ρ( r⃗ )=∑
J

f J . δ( r⃗− r⃗J)= ∫
rec.vol.

F( s⃗ )exp [−2iπ r⃗. s⃗ ]. d s⃗

ρ( r⃗ )=∑
J

f J . δ( r⃗− r⃗J)=∑
h , k , l

F( s⃗ )exp [−2iπ r⃗. s⃗ ]

 Electron density calculation 

a⃗ . b⃗∧c⃗  : cell volume

s⃗
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What is a Fourier transform?

 Example of a crystal

ρ( r⃗ )=∑
J

f J .δ( r⃗−r⃗ J)=∑
h , k , l

F( s⃗ )exp[−2iπ r⃗. s⃗ ]

 The electron density is a complex function depending on the nature of your 
molecule

➢ If the molecule is in a crystal, the electron density is periodical

 A way to describe it as a sum of well known functions
➢ Sinus or cosinus

➢ Structure factors represent the coefficients of these sinus/cosinus functions
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What is the meaning of F(s)?

 A parallel with sound
➢ The sound can be described as the acoustic pressure as a function of time

➢ The Fourier transform is the analysis of the frequencies present in your sound
 One can describe the sound as a sum of different frequencies
 The higher frequencies, the more detailed is the sound
 Parallel with resolution


 Let try a real time analysis
➢ Live with AudioXporer
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Parallels between sound and electron density

Time (s) Frequency (s-1 or Hz)

Space (Å) Reciprocal space (Å-1)

Sound

Electron density



2 juin 2018 Ecole d'Oléron 2018 - D. Housset 42

Go back to electron density

 Equivalence Sound <=> Electron density
➢ Pitch <=> unit cell dimensions

➢ Instrument sound <=> molecule's electron density

 The reflection (1,0,0) is the coefficient for or sinusoidal function, the period 
of which is the a axis

 Higher indices correspond to higher spatial frequencies, i.e. to periods 
which are fractions of the a axis

 The higher you go in indices (h,k,l), the higher is the resolution (1/d):

ρ( r⃗ )=∑
h , k , l

F(h . a⃗∗
+ k . b⃗∗

+ l . c⃗∗
)exp [−2iπ r⃗.(h . a⃗∗

+ k . b⃗∗
+ l . c⃗∗

)]

∣s⃗∣=∣h . a⃗∗
+ k . b⃗∗

+ l . c⃗∗
∣=

1
d
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Electrons: Imaging or diffraction?

 Both the electric and the magnetic field induce force on the electron

F⃗= e . E⃗⏟
electric field

+ e . v⃗∧B⃗⏟
magnetic field

 A magnetic field can deviate an electron

B⃗

F⃗

v⃗

e-

 A lens can be made for electrons with magnet
➢ First one made in 1929 (Ruska & Knoll)

E⃗

F⃗

e-
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Direct imaging of the molecule

e- e- e- ?

~ 3 Å electron 
density map, 

Khatter et al, Nature, 
520:640, 2015 
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Not possible for neutrons

 No lens available for neutrons
➢ Diffraction spectra

 If you manage to measure the amplitude and to get the phase of the wave 
for each reflection on the detector

➢ A Fourier transform enable to calculate the distribution of nucleus of your molecule

∑
J

σJ . δ( r⃗ − r⃗ J)=∑
h , k , l

F( s⃗ )exp [−2iπ r⃗. s⃗ ]

 Scattering cross section for H and D are very different
➢ Deuteration can be useful
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To conclude

 X-rays & Neutrons
➢ Diffraction => F(hkl) + φ(hkl) => electron density map

➢ Small angle scattering => ab-initio modeling (fit whith scattering curve)

 Electrons
➢ Direct imaging => “electron density” map

➢ Diffraction => F(hkl) + φ(hkl) => “electron density” map

 NMR
➢ Gather structural information (local interatomic distance, …) => search for models 

that satisfy the data.
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