

A few physical concepts essential to structural biology

Dominique HOUSSET E-mail : dominique.housset@ibs.fr

2 juin 2018

Ecole d'Oléron 2018 - D. Housset

Fools d'Oléron 201

Ecole d'Oléron 2018 - D. Housset

How can we obtain structural information?

- A question of interaction between radiation and matter
- Radiations can be:
 - Photons (electro-magnetic wave: light, X-rays)
 - Electrons
 - Neutrons
- Matter

2 juin 2018

- Your (macro)molecule under study
 - Atoms forming your molecule
 - H, C, N, O, S, ...

ustrations dapted from Wikipedia

1 Å = 100.000 fm

Possible approaches

- "Imaging" techniques
 - Visible light microscopy
 - Electron microscopy ۶
 - X-ray, neutron or electron crystallography
- Localization technique
 - Super-resolution microscopy
- Spectroscopic techniques
 - > NMR
 - SAXS

Ecole d'Oléron 2018 - D. Housset

Visible light microscopy

Image

- Source light (radiation): photons or electromagnetic wave
 - Wave length: 0.3 0.8 μm
- Object (matter): absorb and re-emit incident light in all directions
 - More or less absorption

Object

2 juin 2018

- some time wave length dependent (color)
- Lens: focuses light emitted by the object on the image plane
 - The light emitted by one point of the object is focused on one point of the detector

Ecole d'Oléron 2018 - D. Housset

Image: eyes, camera, detector, film, ...

Ecole d'Oléron 2018 - D. Housset

- Be because of the wave nature of light
 - > Diffraction of light by a disk when the disk size of the same order of magnitude than the wave length:
 - The angle at which the 1st minimum occurs is given by: $sin\theta \approx 1.22 \frac{\lambda}{d}$ (far from the aperture, d diameter of the aperture)
- Rayleigh criterion

$$d = 1.22 \frac{\lambda}{2 n \sin\theta} \approx \frac{\lambda}{2 \sin\theta}$$
 (in air)

- \rightarrow n.sin θ is the numerical aperture of the lens
 - Max $\approx 1.4 1.6$
- Maximum resolution with visible light
 - ≈ 0.25 µm

2 juin 2018

- Enough for cells •
- Not enough for molecules

The best focussed spot of light made by a lens of circular aperture is limited by the diffraction light

How to increase resolution?

2 juin 2018

Ecole d'Oléron 2018 - D. Housset

Photoelectric effect (absorption of a photon and emmission of an elctron)

- Compton Scatering (inelastic scattering between a photon and an electron)
- Electron/Positron pair production (only high energy photon > 1MeV)
- Rayleigh scattering (Photon eleastic scattering by atomic electons)

Ecole d'Oléron 201 18 - D. Housset

Atomic resolution with photons?

- Decrease the wavelength
 - For atomic resolution
 - $d \sim 1 \text{ Å} => \lambda < 2 \text{ Å}$
 - Use photons in the domain of X-rays
 - Typically: for $\lambda = 1$ Å, E = hv = hc/ $\lambda \approx 12.4$ keV
- Do X-rays interact with atoms?

•

2 juin 201

- Yes, X-ray photons with the electronic cloud of an atom

1 Å = 100,000 fm

How a photon is scattered by an atom

- Elastic scattering (no loss of energy, wavelength is conserved)
 - Rayleigh scattering: bound atomic electrons
 - > Thomson scattering: free electrons (photon energy >> electron binding energy)
 - Carbon atom E(1s) = -1013 eV, E(2s,2p) = -36 eV to be compared to 7 to 15 keV for X-ray photons
 - Photon energy should differ from element absorption edges
- The wave description of X-ray photons (electromagnetic wave) is fine to explain the phenomenon (classical model)
 - > In an electric field \vec{E} a charge e feels a force: $\vec{F} = e \cdot \vec{E}$
 - Thus, the electric field of the electromagnetic wave will induce movement of nucleus and electrons
 - Due to the non-relativistic velocity of atomic electrons, the Lorentz force induced by the magnetic field of the electromagnetic wave $\vec{F}=e.\vec{v}\wedge\vec{B}$ can be neglected

Ocillating dipole

- In an electric field \vec{E} a charge e feels a force: $\vec{F} = e \cdot \vec{E}$
- The force will induce an acceleration of both the electron and the nucleus

$$\vec{F} = m \cdot \vec{\gamma} \Longrightarrow \vec{\gamma}_e = -e \cdot \frac{\dot{E}}{m_e} \text{ and } \vec{\gamma}_n = + Ze \cdot \frac{\dot{E}}{(Zm_p + (A - Z)m_n)}$$

• Since m_p and $m_n >> m_e$ one can neglect the movement of the nucleus

• The dipole induced by the electric field is: $\vec{d} = Ze \cdot \vec{r}$

2 juin 2018

(with \vec{r} vector between center of mass of electrons and nucleus)

$$\frac{\partial^2 \vec{d}}{\partial t^2} = -Ze \cdot \vec{\gamma}_e = Ze^2 \cdot \frac{\vec{E}}{m_e}$$

$$\vec{E} = \vec{E}_0 \cos[\omega t] \Rightarrow \vec{d} = -(Ze^2 \frac{\vec{E}_0}{m_e \omega^2}) \cos[\omega t]$$
ocillating electric field
$$\underbrace{\vec{E} = \vec{E}_0 \cos[\omega t]}_{\text{ocillating dipole}} \Rightarrow \vec{d} = -(Ze^2 \frac{\vec{E}_0}{m_e \omega^2}) \cos[\omega t]$$

Oscillating dipole and emitted wave

The incident electromagnetic wave induce the oscillation of the electronic cloud

The negatively charged electronic cloud and the positively charged nucleus become an **oscillating dipole**, thus emitting a spherical electromagnetic wave of **same wavelength** with a phase shift of π

Accessible information?

- Each atoms is emitting an electromagnetic wave (photon):
 - > Amplitude proportional to Z (number of electrons)
 - Phase determined by the phase of the incident wave, at the position of the atom
- => In principle, access to the electron density
- What about other beams?
 - > Electrons
 - Neutrons

Other particles to probe matter?

RéNafoBis

- Is photon (electromagnetic wave) the unique probe to see molecule?
- In 1924, Louis de Broglie proposed that all elementary particles can behave both as a wave and as a particle
 - Any particle can be used to probe matter if
 - the associated wave length $\lambda = \frac{h}{r}$ is appropriate
 - It interact with matter
 - > What is the wave length of an elementary particle?
 - Photon (no mass): $E = hv = h\frac{c}{\lambda}$, $p = \frac{hv}{c}$

• Particle (mass \neq 0): $E = \frac{1}{2}mv^2$, p = mv, $\lambda = \frac{h}{mv}$

with $h(Plank constant) = 6.6257 \, 10^{-34} J.s$, p:momentum, v:frequency

Energies and wave length

Electromagnetic waves / photons (1901, Röntgen)

- Photon energy: $E = hv = h\frac{c}{\lambda} \rightarrow 7 \text{ keV} < E < 17 \text{ keV} \text{ or } 1.7 \text{ Å} > \lambda > 0.7 \text{ Å}$
- Electrons (1897, Thomson)

• Negatively charged particle (q = $1.6 \ 10^{-19} \text{ C}, \text{m}_{e} = 9.1091 \ 10^{-31} \text{ kg}$)

 $E = \frac{1}{2} m_e v^2$, $\lambda = \frac{h}{m_e v} \Rightarrow \lambda = 1.2 \text{ Å for } v = 6000 \text{ km/s and } E = 100 \text{ eV}$ in practice 100 keV < E < 300 keV and 0.037 Å > λ > 0.019 Å

Neutrons (1932, Chadwick)

• Neutral particle (
$$m_n = 1.6749 \ 10^{-27} \ \text{kg}$$
)

$$E = \frac{1}{2}m_n v^2$$
, $\lambda = \frac{h}{m_n v} \rightarrow \lambda = 1.5 \text{ Å for } v = 2600 \text{ m/s and } E = 3.6 10^{-2} \text{ eV}$

Ecole d'Oléron 2018 - D. Housset

14

- Charged particle
 - Sense" the electrostatic potential
- Strongly interact with matter
 - About 10⁴ times more than X-rays
- Elastic scattering represents 25% of scattered electrons
 - Only 5% for X-rays

2 juin 2018

Optimal thickness of sample

- All electrons are absorbed if sample thickness ^{0.5} exceed the µm
- For X-rays, about 98% of the photons go through a 100 µm thick sample without any interaction

Illustrations taken from J.P. Abrahams

- Strongly interact with matter
 - > Elastic interaction with:
 - Atomic electron (small energy transfer)
 - No change in trajectory
 - Nucleus (Rutherford or Coulomb scattering)
 - · Main contribution to elastic scattering
 - Inelastic interaction
 - Bremsstrahlung (higher enrgies)
 - Absorption (lower energies)

Illustrations taken from J.P. Abrahams

- Atomic scattering factor for electrons depends on Z
 - > Scattering probability ~ $Z^{4/3}$ (for X-rays, scattering probability ~ Z^2)
- Also strongly depends on the atomic charge

2 juin 2018

=> access to a combination of electron density and charge information

Ecole d'Oléron 2018 - D. Housset

Illustrations taken from K. Yonekura

Neutrons

- No electromagnetic interaction
 - Penetrate matter easily
- Different type of neutrons
 - Cold neutrons: E<0.0038 eV
 - Thermal neutrons: 0.0038 eV < E < 0.5 eV => used for diffraction and SANS experiment
 - Epithermal or resonance neutrons: 0.5 eV<E<100 keV
 - Fast neutrons: 100 keV<E<10MeV
 - Relativistic neutrons: E>10MeV
 - Elastic interaction with nucleus: E < 1MeV</p>
 - Inelastic scattering by nucleus: E > 1MeV
 - Induced fission

Neutrons: differences and similarities with X-

- Neutrons interact with nucleus
 - > We observe nucleus and not electron density
 - Proton can be observed
 - Scattering cross-section comparable to that of X-rays
 - Yariable scattering cross section depending on the type of atom
- Nuclei are very small (10⁻¹⁵m) compare to the wave length (10⁻¹⁰m)
 - > Quasi a point
 - Impact on the atomic form factor • Spherical electron density $f_{at}(\vec{s}) = f_{at}(|\vec{s}|) = 2 \int_{r=0}^{\infty} \rho(r) \sin \frac{(2\pi sr)}{s} dr$ • $f_{at}(0) = Z$
 - + For neutron $f_{nuc}(s) = \sigma_{scat}$
 - No decrease with s or resolution
- => access to spatial distribution of nuclei

 $|F(\vec{S})|$

С

Н

Different point of views

X-ray photons

Electrons

Neutrons

Ecole d'Oléron 2018 - D. Housset

20

Why can't we get directly the image of the molecule with X-rays?

- Problem: we have no lens for X-ray photons
 - No image on the detector, but a scattering spectra
- With a lens
 - > All radiation arriving on one point of the detector come from one point on the object

2 juin 2018

Ecole d'Oléron 2018 - D. Housset -

Scheme for a scattering spectrum

Without a lens

- Radiation arriving on one point of the detector come from all points on the object
 - · It the sum of waves emitted by each point of the object

Source of light	spectra
Object	

Diffusion/diffraction

- What is the link between the scattering spectra and the molecule?
- Can we still get a image of the molecule?
- Mathematical representation of an electromagnetic wave?
 - > Wave generated by an oscillating dipole

 ω : angular frequency, ν : frequency, λ : wave length, \vec{q} : wave vector or momentum

Reminder about waves

- Fresnel representation of waves
 - > Electric field: $\vec{E}_0 \cos[\omega t \vec{q}_0 \cdot \vec{r}] = \vec{E}_0 \exp[i(\omega t \vec{q}_0 \cdot \vec{r})]$
 - > A phase shift $\varphi: \vec{E_0} \exp[i(\omega t \vec{q_0}, \vec{r} + \phi)] = \vec{E_0} \exp[i(\omega t \vec{q_0}, \vec{r})] \cdot \exp[i\phi]$

Reminder about waves

- Fresnel representation of waves
 - Electric field: • A phase shift φ : $\vec{E}_0 \cos[\omega t - \vec{q}_0.\vec{r}] = \vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r})]$ $\vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r} + \varphi)] = \vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r})] \cdot \exp[i\varphi]$

Reminder about waves

Sum of two waves are simple to express

 $\vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r})] + \vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r})] \cdot \exp[i\phi] = \vec{E}_0 \exp[i(\omega t - \vec{q}_0.\vec{r})] \cdot (1 + \exp[i\phi])$

- $\phi = 0^{\circ}$ (or 2π) => in phase => constructive interference
- $\phi = 180^{\circ}$ (or π) => out of phase => destructive interference

2 juin 2018

Ecole d'Oléron 2018 - D. Housset

Scattering by one atom

- The planar incident wave induces the emission of a spherical wave of same wavelength and with a π phase shift

Scattering by one atom

2 juin 2018

Ecole d'Oléron 2018 - D. Housset

28

Scattering by two atoms

 The two atoms are emitting a spherical electromagnetic wave. If the two atoms are not mobile and close by, the two waves interfere

Scattering by two atoms

Scattering by numerous atoms

Scattering by numerous atoms

• The wave emitted by all atoms in P is jus the sum:

$$\sum_{J} \vec{E}_{0} \exp[i(\omega t - \vec{q}_{0}.\vec{r}_{J})] \cdot \frac{f_{J}}{|\vec{r} - \vec{r}_{J}|} \cdot \exp[-i\vec{q}_{1}.(\vec{r} - \vec{r}_{J})] \cdot \exp[i\pi]$$

> If sample size << distance sample detector $(|\vec{r} - \vec{r}_J| \approx |\vec{r} - \vec{r}_0|)$ it becomes:

$$\frac{\mathrm{E}_{0}}{\left|\vec{r}-\vec{r}_{0}\right|}\exp[i(\omega t-\vec{q}_{1}.\vec{r})].\exp[i\pi].\sum_{\mathrm{J}}f_{\mathrm{J}}.\exp[i(\vec{q}_{1}-\vec{q}_{0}).\vec{r}_{\mathrm{J}}]$$

• If we define the scattering vector: $\vec{s} = \vec{s}_1 - \vec{s}_0 = \frac{1}{2\pi} \cdot (\vec{q}_1 - \vec{q}_0)$

$$\frac{\vec{E}_0}{\left|\vec{r}-\vec{r}_0\right|}\exp\left[2\,i\pi\left(\nu t-\vec{s}_1\cdot\vec{r}\right)\right]\cdot\exp\left[i\pi\right]$$

depend on the incident wave and position P

Fourier transform of the distribution of scattering factors

 $\sum_{J} f_{J} . \exp[2 i\pi \vec{s} . \vec{r}_{J}]$

Scattering by numerous atoms

- The structure factor is $F(\vec{s}) = \sum f_J exp[2i\pi(\vec{s}), \vec{r}_J]$
 - Fit is the Fourier transform of the distribution of electron, *i.e.* the electron density: $F(\vec{s}) = \sum_{J} f_{J} . \exp[2i\pi(\vec{s}) . \vec{r}_{J}] = \int_{vol} \rho(\vec{r}) \exp[2i\pi\vec{r} . \vec{s}] . d\vec{r}$
 - It is a complex number (amplitude and phase)
- The <u>electron density</u> can be calculated by the reverse Fourier transform:

$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \int_{\text{rec.vol.}} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}] \cdot d\vec{s}$$

- The detector measures the intensity of the scattered wave
 - This intensity is proportional to the square modulus of structure factor

$$I(\vec{s}) \propto |F(\vec{s})|^2$$

What if the sample is a crystal?

- A crystal can be described by a unit cell
 - > Three vector \vec{a} , \vec{b} , \vec{c} define this unit cell
- Unit cells (identical content) are piled up in the 3 directions of space

> The general form of the structure factor is:

$$F(\vec{s}) = \int_{\text{vol sample}} \rho(\vec{r}) \exp[2i\pi \vec{r}.\vec{s}].d\vec{r}$$

If the sample is a crystal, it can be described as a pile of N_{cell} unit cells

$$F(\vec{s}) = \sum_{n=1}^{N_{cell}} \int_{volcell} \rho(\vec{r} + \vec{r_n}) \exp[2i\pi(\vec{r} + \vec{r_n}).\vec{s}].d\vec{r}$$

with: $\vec{r_n} = n_1.\vec{a} + n_2.\vec{b} + n_3.\vec{c}$ and $\rho(\vec{r} + \vec{r_n}) = \rho(\vec{r})$

factor ≈ 0 , except if \vec{s} satisfy Laue equations : $\vec{a} \cdot \vec{s} = h$, $\vec{b} \cdot \vec{s} = k$, $\vec{c} \cdot \vec{s} = l \Rightarrow$ factor $= N_{cell}$ Fourier transform of electron density of the unit cell

There is significant X-ray scattering only in specific, discrete direction => <u>diffraction</u> <u>phenomenon</u>

X-ray scattering by a crystal

In directions that satisfy Laue equation, the structure factor is the one of the unit cell, multiplied by the number of cells in the crystal.

$$F(\vec{s}) = N_{cell} \cdot \int_{vol cell} \rho(\vec{r}) exp[2i\pi \vec{r} \cdot \vec{s}] \cdot d\vec{r}$$

Fourier transform of electron density of the unit cell

> The crystal is a **signal amplifier**, in direction where you have signal:

How we get the "image" from a diffraction spectra

- In the case of a crystal:
- \vec{s} statisfies the Laue equations $\vec{a} \cdot \vec{s} = h, \vec{b} \cdot \vec{s} = k, \vec{c} \cdot \vec{s} = l$
- \vec{s} is a vector of a lattice, named **reciprocal lattice**

$$\vec{s} = h \cdot \vec{a^*} + k \cdot \vec{b^*} + l \cdot \vec{c^*} \quad \text{with } \vec{a^*} = \frac{\vec{b} \wedge \vec{c}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}, \ \vec{b^*} = \frac{\vec{c} \wedge \vec{a}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}, \ \vec{c^*} = \frac{\vec{a} \wedge \vec{b}}{\vec{a} \cdot \vec{b} \wedge \vec{c}}$$
$$\vec{a} \cdot \vec{b} \wedge \vec{c} : \text{cell volume}$$

Electron density calculation

2 juin 2018

$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \int_{\text{rec.vol.}} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}] \cdot d\vec{s}$$
$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}]$$

Example of a crystal

$$\rho(\vec{r}) = \sum_{J} f_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}]$$

- The electron density is a complex function depending on the nature of your molecule
 - > If the molecule is in a crystal, the electron density is periodical
- A way to describe it as a sum of well known functions
 - Sinus or cosinus
 - Structure factors represent the coefficients of these sinus/cosinus functions

What is the meaning of F(s)?

A parallel with sound

- The sound can be described as the acoustic pressure as a function of time
- > The Fourier transform is the analysis of the frequencies present in your sound
 - One can describe the sound as a sum of different frequencies
 - The higher frequencies, the more detailed is the sound
 - Parallel with resolution
 - •
- Let try a real time analysis
 - > Live with AudioXporer

Parallels between sound and electron density

2 juin 2018

Ecole d'Oléron 2018 - D. Housset

Go back to electron density

- Equivalence Sound <=> Electron density
 - Pitch <=> unit cell dimensions
 - Instrument sound <=> molecule's electron density

$$\rho(\vec{r}) = \sum_{h,k,l} F(h.\vec{a^*} + k.\vec{b^*} + 1.\vec{c^*}) \exp[-2i\pi \vec{r}.(h.\vec{a^*} + k.\vec{b^*} + 1.\vec{c^*})]$$

- The reflection (1,0,0) is the coefficient for or sinusoidal function, the period of which is the a axis
- Higher indices correspond to higher spatial frequencies, i.e. to periods which are fractions of the a axis
- The higher you go in indices (h,k,l), the higher is the resolution (1/d):

$$|\vec{s}| = |h.\vec{a^*} + k.\vec{b^*} + 1.\vec{c^*}| = \frac{1}{d}$$

Electrons: Imaging or diffraction?

Both the electric and the magnetic field induce force on the electron

- A magnetic field can deviate an electron
- A lens can be made for electrons with magnet
 - First one made in 1929 (Ruska & Knoll)

Direct imaging of the molecule

2 juin 2018

Ecole d'Oléron, 2018 - D. Housset,

44

Not possible for neutrons

- No lens available for neutrons
 - Diffraction spectra
- If you manage to measure the amplitude and to get the phase of the wave for each reflection on the detector
 - > A Fourier transform enable to calculate the distribution of nucleus of your molecule

$$\sum_{J} \sigma_{J} \cdot \delta(\vec{r} - \vec{r}_{J}) = \sum_{h,k,l} F(\vec{s}) \exp[-2i\pi \vec{r} \cdot \vec{s}]$$

- Scattering cross section for H and D are very different
 - Deuteration can be useful

To conclude

X-rays & Neutrons

- > Diffraction => F(hkl) + $\phi(hkl)$ => electron density map
- Small angle scattering => ab-initio modeling (fit whith scattering curve)
- Electrons
 - Direct imaging => "electron density" map
 - > Diffraction => F(hkl) + $\phi(hkl)$ => "electron density" map
- NMR
 - Gather structural information (local interatomic distance, ...) => search for models that satisfy the data.