Cryo-electron microscopy, a key player in integrative structural biology

Adeline GOULET

Oléron 2018

The Royal Swedish Academy of Sciences has decided to award the

« It's opened up a previously unapprochable area of structural biology » R. Henderson

2017 NOBEL PRIZE IN CHEMISTRY

Jacques Dubochet Joachim Frank **Richard Henderson**

"for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution"

Sobelprize.org

First alomic structure

A 'revolution in resolution'

Acquisition Detection Computation

Method of the Year 2015

The end of 'blob-ology': single-particle cryo-electron microscopy (cryo-EM) is now being used to solve macromolecular structures at high resolution.

How Cryo-EM Became so Hot

Yifan Cheng,¹ Robert M. Glaeser,^{2,*} and Eva Nogales^{2,3} ¹Department of Biochemistry and Biophysics, and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA ²Lawrence Berkeley National Laboratory, Berkeley, CA, USA ³Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA *Correspondence: rmglaeser@lbl.gov

https://doi.org/10.1016/j.cell.2017.11.016

Cumulative number of maps released

A 'revolution in resolution'

Review

How cryo-EM is revolutionizing structural biology

Xiao-chen Bai, Greg McMullan, and Sjors H.W Scheres

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK

Maps achieving given resolution levels

Year

The integrative role of cryo electron microscopy in molecular and cellular structural biology

Review

Igor Orlov*†‡§, Alexander G. Myasnikov*†‡§, Leonid Andronov*†‡§, S. Kundhavai Natchiar*†‡§, Heena Khatter*†‡§², Brice Beinsteiner*†‡§, Jean-François Ménétret*†‡§, Isabelle Hazemann*†‡§, Kareem Mohideen*†‡§, Karima Tazibt*†‡§, Rachel Tabaroni*†‡§, Hanna Kratzat*†‡§, Nadia Djabeur*†‡§, Tatiana Bruxelles*†‡§, Finaritra Raivoniaina*†‡§, Lorenza di Pompeo*†‡§, Morgan Torchy*†‡§, Isabelle Billas*†‡§, Alexandre Urzhumtsev*†‡§ and Bruno P. Klaholz*†‡§¹

*Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France, †Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France, ‡Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France, and §Université de Strasbourg, Strasbourg, France

Molecular cryo-EM

CELL NUCLEUS

SCIENCE

Visualizing the molecular sociology at the HeLa cell nuclear periphery

Julia Mahamid,^{1*} Stefan Pfeffer,¹ Miroslava Schaffer,¹ Elizabeth Villa,^{1,2} Radostin Danev,¹ Luis Kuhn Cuellar,¹ Friedrich Förster,¹ Anthony A. Hyman,³ Jürgen M. Plitzko,¹ Wolfgang Baumeister^{1*}

Cellular cryo-EM

100 mm

NPC

HOW TO DETERMINE THE STRUCTURE OF YOUR FAVORITE BIOLOGICAL **SAMPLE USING CRYO-EM AND SINGLE PARTICLE ANALYSIS?**

INTRODUCTION TO SAMPLE PREPARATION AND IMAGE FORMATION/DETECTION IN TRANSMISSION ELECTRON MICROSCOPY

Adeline GOULET

Oléron 2018

architecture et fonction des macromolécules biologiques

Introduction to image formation basic anatomy of a microscope amplitude vs phase contrast

2) Overview of sample preparation for SP EM

Negative staining
Flash Freezing
EM grids

1924

Louis de Broglie

Wave-particle duality (Louis de Broglie) : **λ=h/(m.v)** (h=Planck constant)

Wavelength (Å)	Resolution (Å)
0,037	0,023
0,0197	0,012
	Wavelength (Å) 0,037 0,0197

average atom radius ~ 1 Å // C-C ~ 1.54 Å

The electron beam wavelength is NOT a limiting parameter in getting atomic structures

Why electrons?

A particle with a mass m and a speed v is characterized by a wave length λ

1931

9.1.31. Esamparaturanovolucing

Szilard (physicist) : « Busch has shown that one can make electron lenses, de Broglie has shown that they have sub-Angstrom wave lights. Why don't you make an electron microscope, one could see atoms with it! »

<u>Gabor (physicist): « Yes, I know. But one cannot put living</u> matter into a vacuum and everything will burn anyway to a cinder under an electron beam »

Ernst Ruska built the first TEM (mag 17.4) **Noble Prize in 1986**

Why electrons?

1931

9.1.31. Poridon Jac. 218,2. lande building mit unlaws Flantaller (bu Esanstapparaturanovclining

Why electrons?

2005 TITAN Krios Thermo Scientific™

Basic anatomy of an EM

High vacuum ~ 10⁻⁶ Pa

Coherence & brightness

- **Brightness or spatial coherence (~ electrons density)**
- Temporal coherence (same wavelength)

Electron sources

Electromagnetic lenses deviate and focalise electrons

Electromagnetic lenses

object

magnetic field copper wire (lens) electron trajectories magnified image

Electromagnetic lenses deviate and focalise electrons

Electromagnetic lenses

Electromagnetic lenses deviate and focalise electrons

Electromagnetic lenses

Perfect lens

Chromatic aberration

Electromagnetic lenses

EV Orlova & HR Saibil, Chemical Reviews, 2011

Objective lens aberrations (focalisation defects) limit the resolution

Detectors

The image is divided up into pixels with a given sampling that determines the highest resolution to analyse.

Nyquist limit = 2x(pixel size)

Detectors

Photographic film

- Digitization (1 pixel= 8 µm) - 1s/frame

Noise affecting resolution

- Digital image (1 pixel= $14 \mu m$)

Downing K et al, 1999

Image

CCD array

Cooler

Direct electron detector

Detectors

DQE (Detective Quantum Efficiency) ~ Sensitivity

Courtesy of O. Lambert

DED

Rolling read-out reduces noise in images

1. Electron enters detector

2. Signal is scattered

3. Charge collects in each pixel

Integration mode

Detectors

Counting mode Improved DQE 4b. Events localized with sub-pixel accuracy

 (\mathbb{C})

Super-Resolution counting mode Improved DQE 7680 x 7424 pixels

40 frames per second: events overlap and cannot be resolved.

400 frames per second: events are resolved.

Detectors

Rolling read-out enables motion correction

Average of frames that experienced translations

Brilot A et al, JSB 2012

Average after translational alignment of individual frames

Unscattered electrons (EU=EO)

Elastic scattering (Ee=E0)

Image formation

EV Orlova & HR Saibil, Chemical Reviews, 2011

Inelastic scattering (low angle, Ei<EO)

RADIATION DAMAGE

= Fundamental limit for resolution

Amplitude contrast (electrons as particules)

Amplitude contrast

lose of electrons

EV Orlova & HR Saibil, Chemical Reviews, 2011

Image formation

Incident electrons Backscattered electrons dense object, heavy atoms

Transmitted electrons

Backscattered vs transmitted electrons create contrast

Phase contrast (electrons as waves)

Image formation

- 2D projection of the sample's Coulomb potential
- biological samples are weak phase objects
- small phase shift —> small amplitude variation

Contrast is enhanced by taking under-focus image

Contrast transfer function

Image formation

EV Orlova & HR Saibil, Chemical Reviews, 2011

**** Phase plate **** introduces contrast over a large resolution range Light source Condenser lens

Image formation

******* Phase plate ******* introduces contrast over a large resolution range

ARTICLE

Received 27 Apr 2017 | Accepted 26 May 2017 | Published 30 Jun 2017

DOI: 10.1038/ncomms16099

OPEN

Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate

Maryam Khoshouei¹, Mazdak Radjainia^{2,†}, Wolfgang Baumeister¹ & Radostin Danev¹

CELL NUCLEUS

SCIENCE

Visualizing the molecular sociology at the HeLa cell nuclear periphery

Julia Mahamid,¹* Stefan Pfeffer,¹ Miroslava Schaffer,¹ Elizabeth Villa,^{1,2} Radostin Danev,¹ Luis Kuhn Cuellar,¹ Friedrich Förster,¹ Anthony A. Hyman,³ Jürgen M. Plitzko,¹ Wolfgang Baumeister¹* in the TEM (8, 9). We resolved this by sputtering a fine metal coating onto the FIB-lamellas, as routinely applied for biological cryo-scanning electron microscopy (SEM) imaging (10). (ii) Direct detectors improve the quality of cryo-TEM images substantially (11), and (iii) the recently developed Volta phase plate (VPP) enhances (phase) contrast especially for lower spatial frequencies without the need of defocusing, rendering the tomograms directly interpretable (9, 12, 13). Here, we combined these developments to produce in situ high-resolution 3D snapshots of the HeLa cell nuclear periphery.

Image formation

SCIENCE sciencemag.org 23 JANUARY 2015 • VOL 347 ISSUE 6220 A molecular census of 26S proteasomes in intact neurons

Shoh Asano,* Yoshiyuki Fukuda,* Florian Beck, Antje Aufderheide, Friedrich Förster, Radostin Danev, Wolfgang Baumeister†

all (> 3σ) 26S proteasome particles present in the tomograms were detected. In contrast, we could not identify 26S proteasome particles reliably in cryotomograms acquired without the Volta phase plate (9). To quantify the signal quality of particles acquired with the phase plate, we compared

Introduction to image formation basic anatomy of a microscope amplitude vs phase contrast

2) Overview of sample preparation for SP EM

Negative staining
Flash Freezing
EM grids

- continuous

- holey

- functionalized

Sample preparation

The macromolecular shape is seen by exclusion rather than binding of stain (negative staining)

Negative staining

Advantages

- quick & easy
- Limited resolution (20Å) - Few amount of sample (~15-50 µg/mL) - Sample damage
- high contrast

(uranyl acetate, phosphotungstic acid, molybdate, ...)

- Evaluate sample homogeneity, size, shape, symmetry, complex formation

Negative staining

Disadvantages

- (dehydration, pH, particles
- often squashed)
- Uneven staining makes difficult data processing and analysis

Negative staining

PKS module

	ARTICLES	NATURE VOL. 308 1 M
Cryo-electro	on microscopy of v	viruses
Marc Adrian, Jacques D	ubochet, Jean Lepault & Ala	asdair W. McDowa
European Molecular E	Biology Laboratory, Postfach 10.2209, D-6900 He	idelberg, FRG

Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare fai

> Quarterly Review of Biophysics 21, 2 (1988), pp. 129-228 Printed in Great Britain

Cryo-electron microscopy of vitrified specimens

Vitreous = glass, amorpho NOT crystalline

JACQUES DUBOCHET', MARC ADRIAN², JIIN-JU CHANG³, JEAN-CLAUDE HOMO⁴, JEAN LEPAULT⁵, ALASDAIR W. McDOWALL⁶ AND PATRICK SCHULTZ⁴

European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG

Flash-freezing traps biological samples in a vitreous, amorphous ice close to their native state

Cheng et al, Cell, 2017

EV Orlova & HR Saibil, Chemical Reviews, 2011

- sample < $3 \mu m$
- liquid ethane (melting point ~ -183° C vs LN2 boiling point ~ -196° C)
- plunge at > 1m/s

Flash-freezing

Automated plunge freezer

Controls:

- T° & humidity
- blot force/time, single/double side
- liquid ethane temp

Low mag view of a grid square

https://cryoem.ucsd.edu

Flash-freezing

Beta-galactosidase

Vinothkumar & Henderson, QRV, 2016

K2 DED, 300 kV, 3-4 µm defocus, 17 e⁻/A²/s, 4s exp

Frozen samples suffer from radiation damage

Sample

Concentration

M.W.
10 kD
50 kD
250kD
1 MD
5 MD
25 MD

Buffer composition

- low salt (< 150 mM NaCl)
- < 5% glycerol, sucrose, ...
- Low conc. detergent

Flash-freezing

Number of particles in projection/µm² in 800 Å thick ice film (separation)

Concentration										
10mg/ml		2mg/ml	/ml 0.5mg/ml		ml	0.1mg/ml	20µg/ml			
48000	(45Å)	10000	(100Å)	2500	(200Å)	500 (450 Å)	100 (10			
10000	(100Å)	2000	(220Å)	500	(400Å)	100 (1000Å)	20 (0.			
2000	(220Å)	400	(500 Å)	100	(1000 Å)	20 (0.2µm)	4 (0.			
500	(400Å)	100	(1000Å)	25	(0.2µm)	5 (0.4µm)	1 (
100 ((1000Å)	20	(0.2µm)	5	(0.4µm)	1 (1µm)	0.2 (2.			
20	(0.2µm)	4	(0.5µm)	1	(1µm)	0.2 (2.2µm)	0.04 (

Vinothkumar & Henderson, QRV, 2016

A gold specimen support nearly eliminates substrate motion during irradiation

Affinity grids

Structure

2.6-A Resolution

Yu et al., 2016, Structure 24, 1984-1990 (E) CrossMark November 1, 2016 © 2016 Elsevier Ltd. http://dx.doi.org/10.1016/j.str.2016.09.008

HOW TO DETERMINE THE STRUCTURE OF YOUR FAVORITE BIOLOGICAL **SAMPLE USING CRYO-EM AND SINGLE PARTICLE ANALYSIS?**

Image analysis, **3D** reconstruction validation & interpretation

Leandro Estrozi Ottilie Loeffelholz von Colberg Célia Plisson