

4

Autoind	lexing											
exp6_lyso_	siras_nat	ive_###.	img : 1					- 0	00	e B	h	ndex
Image	0	range	1	Auto	Man	1 1	Del	> I/d(I)	Fin	d Use	1	1.14
1	1 90.00		0.00 - 91.00		0	0		449				
🍫 Total				731	0		0	449				
Lattice 1												
Solution	n	Lat.	Pen.	<u>a</u>	b	C	a	R	7	8 (x,y)	Nref	& bea
	ref)	aP	0	36.9	78.6	78.9	90.1	90.1	89.2	0.08	412	0.06 (
BH 3 (ref)	mD	1	36.9	78.9	78.5	90.0	90.0	90.0	0.08	410	0.03 (
ET 4 (ref)	mP	î	36.9	78.5	78.9	90.0	90.0	90.0	0.08	412	0.04 (
E 1 5 (ref)	mP	1	78.6	36.9	78.9	90.0	89.9	90.0	0.08	415	0.04 (
H1 6 (ref)	oP	2	36.9	78.5	78.9	90.0	90.0	90.0	0.08	412	0.04 (
H17 (ref)	mC	5	111.4	111.4	36.9	90.0	90.1	90.0	0.08	410	0.02 (
8 (1	ref)	oC	6	111.5	111.4	36.9	90.0	90.0	90.0	0.09	410	0.01 (
H 🚺 🤉 (ref)											
H 10	(ref)	mC	6	111.4	111.4	36.9	90.0	90.1	90.0	0.08	410	0.02 (
E 11	(reg)	mC	109	161.1	36.9	78.8	90.0	90.1	90.0	-	-	-
E 12 12	(reg)	mC	109	161.8	36.9	78.5	90.0	90.1	90.0	-	-	-
13	(reg)	oC	110	36.9	161.8	78.5	90.0	90.0	90.0	-		
14	(reg)	oc	110	36.9	161.1	78.8	90.0	90.0	90.0	-	-	-
10 15	(reg)	mC	111	36.9	161.0	70.5	90.0	89.9	90.0		-	-
M 10	(reg)	mc	111	30.9	101.1	/0.0	90.0	09.9	50.0	-	-	
Lattices:	Show	/									Start bea	am search
Spacegroup	: P4		Prior cell:									
Mosaicity:	1	0.50	Estimate									

Drocessing data: XDS, iMosflm Three steps for data processing : Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry For each diffraction spot, you know Miller indices Symmetry derived from cell parameters: it's only a hypothesis !!!! Integration: for each spot on each frames, measure the intensity Locate spot, assign pixel to « background » or to « spot » Sum the intensity for « spot » pixels Profile fitting (2D iMosflm, 3D XDS)

Processing data: XDS 3D profile fitting: fine slicing
***** AVERAGE THREE-DIMENSIONAL PROFILE OF 6945 STRONG REFLECTIONS *****
0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{smallmatrix} 6 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$

Processing data: XDS, iMosflm Three steps for data processing : Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry For each diffraction spot, you know Miller indices Symmetry derived from cell parameters: it's only a bypothesis IIII

- Symmetry derived from cell parameters: it's only a hypothesis !!!!
- Integration: for each spot on each frames, measure the intensity
 - Locate spot, assign pixel to « background » or to « spot »
 - Sum the intensity for « spot » pixels
 - Profile fitting (2D iMosflm, 3D XDS)
 - Scaling of data: correct for variation in diffracting volume, beam intensity variations,...
 - Use equivalent reflections to place all images: uses the symmetry of the crystal!

Processing data: XDS, iMosflm

Three steps for data processing :

- Indexing data: find possible cell parameters, crystal orientation, guestimate symmetry
 - For each diffraction spot, you know Miller indices
 - Symmetry derived from cell parameters: it's only a hypothesis !!!!
- Integration: for each spot on each frames, measure the intensity
 - Locate spot, assign pixel to « background » or to « spot »
 - Sum the intensity for « spot » pixels
 - Profile fitting (2D iMosflm, 3D XDS)
 - Scaling/merging of data:

٠

- Scaling: correct for variation in diffracting volume, beam intensity variation,. Use the symmetry of the crystal (validate, or not, the symmetry hypothesis from the indexing step)
- Merging: average different observations of equivalent reflections, compute data processing statistics

	Che	cki	ng t	he q	uali	ty c	of y	our	da	ta	
SUBSET OF I RESOLUTION LIMIT 5.35 3.80 3.11 2.69	NTENSITY D NUMBER OBSERVED 6059 10814 13860 16578	ATA WITH OF REFLI UNIQUE 778 1395 1797 2139	SIGNAL/NO ECTIONS POSSIBLE 779 1395 1797 2139	ISE >= -3.0 A COMPLETENESS OF DATA 99.9% 100.0% 100.0%	S FUNCTION R-FACTOR observed 2.1% 2.7% 2.9% 3.4%	OF RESOLU R-FACTOR expected 2.7% 2.7% 2.8% 3.4%	COMPARED 6059 10814 13860 16578	I/SIGMA 67.08 67.86 63.55 49.96	R-meas 2.3% 2.9% 3.1% 3.7%	CC(1/2) 100.0* 99.9* 99.9* 99.9*	Anomal Corr 54* 26* 16*
2.41 2.20 2.04 1.91 1.80 total	18603 20632 22300 23848 24479 157173	2406 2675 2899 3113 3304 20506	2406 2675 2899 3113 3312 20515	100.08 100.08 100.08 100.08 99.88 100.08	4.28 4.98 6.08 8.48 12.28 3.98	4.18 4.98 6.18 8.78 13.08 3.98	18603 20632 22300 23848 24467 157161	42.43 35.82 29.20 21.33 14.55 37.30	4.5% 5.2% 6.4% 9.0% 13.1% 4.2%	99.9* 99.9* 99.8* 99.7* 99.4* 99.9*	5 8 2 5 1 7
Com Rsym I/sigr Rmea CC(1,	pletenes n, Rmerge ma: signa as: multij /2): half (s: which e: disag Il to noi plicity c dataset	n proport reement se ratio orrected s correla	tion of the between a Rsym tion coeffic	possible III observ tient	diffracte ations o	d beam f a refle	is did wo ction (a	e collect nd equi	t? valent)	
Anon	nal Corr										

	Table 1	
	55.70 – 1.80 Å	1.84 – 1.80 Å
N observations	156,728	8,565
N unique	11,204	646
Multiplicity	14.0	13.3
Completeness (%)	100.0	100.0
Rsym or Rmerge	0.053	0.145
l/σ	34.8	15.2

	55.70 – 1.80 Å	1.84 – 1.80 Å
N observations	156,728	8,565
N unique	11,204	646
Multiplicity	14.0	13.3
Completeness (%)	100.0	100.0
Rsym or Rmerge	0.053	0.145
Rmeas	0.057	0.155
CC1/2	0.999	0.995
Ι/σ	34.8	15.2

Data set	Lysozyme	A _{2A} R	A _{2A} R	A _{2A} R 19 h	A _{2A} R	TD1App	TD1 _{Cel}	MOSTO
		SMX	Cryo	6 keV	SFX			
X-ray energy (keV)	12.4	12.4	12.4	6.0	9.5	12.4	12.4	12.4
Measurement time (h)	0.3	6.6	~4	19.4	0.36	7.7	8.6	5.9
Nozzle size	50	50	-	50	50	50	75	75/100
Beam size (µm)	5×5	20×5	20×5	15×5	1×1	20×5/10×5	10×5	20×5/40×5
Flux (ph/s)	3.9×10 ¹¹	1.5×10 ¹²	1.5×10 ¹¹	4×10 ¹¹	2.4×10 ^{11 a}	1.5× 10 ¹² /0.7× 10 ¹²	0.7×10 ¹²	1.5×10 ¹²
Frame rate	50 Hz	50 Hz	10 Hz	50 Hz	120 Hz ^b	50 Hz	50 Hz	50 Hz
Crystal size (µm ³)	15×10× 10	30×30×5	30×30×5	30×30×5	30×30×5	15×10×10	15×10×10	50×20×20
Collected images	58,000	1,180,705	3500	3,496,230	155,241	1,388,078	1,544,487	1,054,366
Crystals used	-	-	6	-	-	-	÷:	-
Indexed patterns	27,000	128,086	3500	186,688	3563	6,6271	6,2245	68,788
Patterns indexed (%)	46.5	10.8	100	5.3	2.3	4.8	4.0	6.5
Resolution	24.84-1.50	25.2-2.14	50.0-1.95	34.0-2.67	20.2-1.70	36.1-2.13	35.0-2.05	24.2-1.70
Number of reflections	9,140,532	31,065,416	306,759	58,802,388	1,325,959	26,000,036	12,155,884	84,306,711
Number of unique reflections	20,181	30,837	32,392	30,230	56,793	65,679	62,424	110,141
Multiplicity	452.9 (4.6)	1007.4 (8.1)	9.5 (2.0)	1945.2 (684.7)	23.3 (3.0)	395.9 (21.8)	194.5 (6.2)	765.4 (113.8)
Completeness	94.7 (49.23)	99.4 (93.83)	87.6 (61.7)	100 (100)	93.7 (53.6)	100 (100)	91.9 (49.5)	100 (100)
I/ sigma	8.35 (0.72)	13.17 (0.70)	10.36 (1.13)	24.76 (3.57)	2.93 (0.44)	6.56 (0.74)	5.19 (0.52)	5.29 (0.32)
cc'	0.99 (0.53)	0.99 (0.47)	0.99 (0.79)	0.99 (0.35)	0.99 (0.45)	0.99 (0.56)	0.99 (0.82)	0.99 (0.83)
CC1/2	0.996	0.99 (0.12)	0.99 (0.46)	0.99 (0.07)	0.97 (0.11)	0.99 (0.19)	0.99 (0.51)	0.99 (0.53)

h	k	1	F	SIGF	DANO	SIGDANO	F(+)	SIGF(+)	F(-)	SIGF(-)
			0.00		0.00	0.00	0.00	0.00	0.00	
0	0	2	-1.00	0.00	-1.00	0.00	-1.00	0.00	0.00	0.0
0	0	3	-1.00	0.00	-1.00	0.00	-1.00	0.00	0.00	0.0
0	0	4	101.12	6.29	0.00	0.00	100.92	9.00	100.05	9.1
0	0	5	5087.18	868.91	5087.18	868.91	5087.18	868.91	5004.75	871.4
0	0	6	-1.00	868.91	-1.00	868.91	-1.00	868.91	5004.75	871.4
0	0	7	-1.00	868.91	-1.00	868.91	-1.00	868.91	5004.75	871.4
0	0	8	712.77	26.26	0.00	0.00	713.90	35.18	706.38	40.0
0	0	9	251303.12	24365.59	251303.12	24365.59	251303.12	24365.59	246856.75	27390.6
0	0	10	-1.00	24365.59	-1.00	24365.59	-1.00	24365.59	246856.75	27390.6
0	0	11	-1.00	24365.59	-1.00	24365.59	-1.00	24365.59	246856.75	27390.6
0	0	12	374.42	11.63	0.00	0.00	377.39	14.45	367.19	19.8
 36	20		239.06	4.01	-32.37	8.15	221.41	6.19	253.78	5.3

What can we do with these data ?

Stéphane... tell us about phases