How to fit molecular models in EM maps

This practical aims at showing how to dock (rigid body fit) an atomic model into a low-resolution UCSF electron microscopy single-particle analysis map usina Chimera 1.12 (https://www.cgl.ucsf.edu/chimera/).

Data

1) Low-pass filtered map of the EMD-5595 beta-galactosidase cryoEM structure: betagal-30A.mrc (Bartesaghi et al, Proc. Nat. Acad. Sci. USA (2014), 111:11709-11714) 2) Beta-galactosidase monomer from the crystallographic structure PDB 1dp0 : monomer.pdb (Juers *et al*, Protein Science (2000), 9:1685-1699)

Information

(Biological information, used as constraints, is always helpful to produce a meaningful fitting)

Beta-galactosidase is a 464 kDa homotetramer. Each monomer consists of five domains : domain 1 is a jelly-roll barrel, domain 2 and 4 are fibronectin type III-like barrels, domain 5 is a β-sandwich, and the central domain 3 is a TIM-type barrel. The active site is made up of elements from the third domain of two monomers in the tetramer.

1. Open map

tetramer with 1.21 Å³ / Da.

(move vertical bar on histogram).

 Use Menu entry <i>File/Open</i> and choose betagal-30A.mrc. Open the Volume dialog (<i>Tools/Volume data/Volume viewer</i>). This gives you map value histogram, contour level, map value range, color, grid size, step size (show effect with mesh). 	Image: Point of the second
	Center Orient Close Help
Adjust map surface threshold in volume dialog so that enclovely volume is 5.6 x 10^5 Å ³ i.e the expected volume for the 464	kDa Measure Volume and Area

- Make surface transparent: Press volume viewer panel color button, click opacity and change the value.

- Use Tools/Measure Volume and Area and Volume Viewer panel

- Change background color (*Presets/publication 1*)
- Mouse buttons functions : rotation \rightarrow left button

translation \rightarrow middle button. $zoom \rightarrow right button / scroll-wheel$

- Show command-line (Favorites/Command Line)
- Show model panel (Favorites/Model Panel)
- Show side-view (Favorites/Side View)

	Color	Editor	
Color name:	#b332b332	2b332	
Color space:	Gray	~	✓ Opacity
G	1000		0.700
A			0.556
	No Color	Close	Help

- Inspect the map (symmetry, domains).

- Determine map symmetry using the Command "measure sym #0"

2. Open atomic structure

- Use Menu entry *File/Open* and choose mono.pdb.

Look at the side view panel and zoom out to see that the monomer is far away from the map.

- Center the molecule (left button click on the molecule and drag) and color rainbow (*Tools/Depiction/Rainbow*).

Inspect the molecule (domains, shape).

3. Hand align molecule with map

- Freeze map motion : uncheck the active model 0 button below command-line or in model panel.

- Drag the molecule into the map with mouse.

- Check active 0 button (unfreeze map) and rotate to inspect superposition.

- Use repeatedly the active 0 button to hand align molecule in map. Look for similar features in molecule and map to guide docking.

4. Optimize local fit

- Open the *Tools/Volume Data/Fit in map* dialog and Press Fit button.

This fit optimization rotates and shifts atomic model to maximize the average map value at the atom positions.

Be aware that average map values and numbers of atoms outside contour are not useful parameters to report in a paper. They are mainly helpers for the fitting procedure, and only relative values are meaningful.

Press Undo/Redo buttons to see how much it moved. Note average map values and numbers of atoms outside contour before and after optimization.

Press Fit several times. Note slight changes.

Fit in Map
Fit mono.pdb (#1) * in map betagal-30A.mrc (#0) *
Correlation Average map value 0.0107 Update
Real-time correlation / average update
Use map simulated from atoms, resolution
✓ Use only data above contour level from first map
Optimize 💿 overlap 🔵 correlation
Correlation calculated about mean data value
Allow 🗹 rotation 🗹 shift
Move whole molecules
1693 of 9380 atoms outside contour
Fit Halt Undo Redo Options Results Close Help

Change contour level, press Update in the Fit dialog and look at the number of atoms outside new contour.

- Set contour to the initial value, make surface opaque and zoom in to see where atoms stick out. Mouse over to see their name. Some of them are water and small molecules. Delete these molecules: *Select/Residue/HOH* and *Actions/Atoms/Delete*. Press fit and note changes.

5. <u>Measure correlation coefficient</u>

Most commonly reported measure of fit quality is correlation coefficient. Correlation values compare two maps, the experimental map and a simulated map, and range from -1 to 1 (0 indicates no correspondence and 1 identical maps). Correlation coefficient depends on domain - volume within the lowest contour level of simulated map) and hence is an ambiguous value that is not meaningful in itself. Comparison of correlation coefficients is the best way to use them.

ReNaFoBis Integrative Structural Biology School - Oléron 2018 Electron Microscopy practical

- In the Fit in Map dialog, check Use map simulated from atoms and set resolution to 30 Å. Set optimization mode to correlation and click Fit.

- Make betagal-30A.mrc map surface transparent and show simulated map as mesh (Volume dialog eye icon).

- Change simulated map threshold and press Update in Fit dialog to see how correlation varies with domain of calculation.

OOO Fit in Map	
Fit mono.pdb (#1) T in map betagal-30A.mrc (#0) T	
Correlation 0.9346 Average map value 0.01104 Update	
Real-time correlation / average update	х
✓ Use map simulated from atoms, resolution 30	
✓ Use only data above contour level from first map	
Optimize 🔵 overlap 💿 correlation	
Correlation calculated about mean data value	
Allow 🗹 rotation 🗹 shift	
Move whole molecules	
1105 of 8129 atoms outside contour	
Fit Halt Undo Redo Options Results Close Help]

File Features	Data Tools					
betagal-30A.m	rc #0 340 ³	step	1	Э		-
			Π			
						_
molmap monom	er.pdb res 3	0 #1.1	28 27 2	9 step	1	• -
		1				
and the second second						
ور نغیار ، عبر از راطالکی	literiati men linina.	n A ite naite	ere onder heit het	in the collection of	he shiki Yakashi sana sa s	lados doit de
Range 0 - 0.37	'8 Level 0.1	61 Co	olor 📕			
Style 🕕 surfac	e 💿 mesh (solid				
		-				
Surface smo	othing iteratio	ons 2	factor 0	.3		x
Surface smo	othing iteratio	ons 2 nes	factor 0	.3		×
Surface smo	othing iteration orface 1 tir th lines	ons 2 nes	factor 0	.3		x
 Surface smo Subdivide su Smooth mes Square mest 	othing iteration orface 1 tir th lines	ons 2 nes	factor 0	.3		×
Surface smo Subdivide su Smooth mes Square mesh Mesh line thick	othing iteration urface 1 tir th lines n ness 5 pix	ons 2 nes	factor 0	.3		×
Surface smo Subdivide su Smooth mes Square mesh Mesh line thicku Dim transpar	othing iteration urface 1 tir th lines th ness 5 pix rent surface/r	ons 2 nes cels nesh	factor 0	.3		×
Surface smo Subdivide su Smooth mes Square mesh Mesh line thicku Oim transpar Mesh lighting	othing iteration urface 1 tin th lines n ness 5 pix rent surface/r g	nes cels nesh	factor 0	.3		×
Surface smo Subdivide su Smooth mes Square mesh Mesh line thicku Oim transpar Mesh lighting Two-sided su	othing iteration urface 1 tir th lines n ness 5 pix rent surface/r g urface lighting	ons 2 nes cels nesh	factor 0	.3		×
Surface smo Subdivide su Smooth mes Square mesh Mesh line thicki O Dim transpar Mesh lighting Two-sided si Light flip sid	othing iteratio urface 1 tir ih lines n ness 5 pix rent surface/r g urface lighting e for threshol	ons 2 nes xels nesh g ds < 0	factor 0	.3		×

- Save this molecule position relative to the map : in Model panel select mono.pdb and click on Write PDB, check save relative to model betagal-30A.mrc and save as fit01.pdb.

- Search for alternative fits (30 trials) with the command "fit #1 #0 search 30" and inspect them.

- Close all pdb files and open your fit01.pdb molecule.

		ave monomer.pdb as PDB File
Folder:		
	M1_BBSG/	monomer.pdb
	Renafobis/	
File name: fit	01.pdb	
		Add .pdb suffix if none given
File type: F	PDB [.pdb] 🗸	New folder
	monomer.pdb (#1)	
Save models:		
Save displ	laved atoms only	
Save selec	ted atoms only	
	· · · · · · · · · · · · · · · · · · ·	
✓ Save relat	ive to model: betagal-:	30A.mrc (#0) V
		Keep dialog up after Sa

6. Make tetramer model

- View symmetry regions with command "sym #2 group #0 surf true".

- Show symmetric molecule copies for fit01.pdb. Command "sym #2 group #0 update true".

- Color molecules distinctly. Select the four chains and in *Tools/Depiction/Rainbow* check Model.

- Inspect clashes between molecules. Hide the map and select all chains by pressing ctrl and drawing a square around the molecules.

Open *Tools/Structure analysis/Find clashes/contacts* and fill in the dialog as shown here. Click Apply. Note number of clashes.

- Fit asymmetric unit and all symmetric molecules with the command "fit #2 #0 sym true res 30".

- Re-inspect clashes.

7. Save session & model

- Use File/Save session as to save you fitting session.

- Select the four molecules on the display and in the Model panel dialog, click "Write pdb" and save in a single file relative to the map.

○ ○ ○ Find Clashes/Contacts					
Atoms to Check					
Designate currently selected atoms for checking					
32516 atoms designated					
 themselves 					
Check designated 🔵 all other atoms					
atoms against: 🔘 other atoms in same model					
second set of designated atoms					
Designate selection as second set					
No second set					
Clash/Contact Parameters					
Find atoms with VDW overlap >= 0.6 angstroms					
Subtract 0.4 from overlap for potentially H-bonding pairs					
Default clash / contact criteria					
Ignore contacts of pairs 4 🔻 or fewer bonds apart					
Include intra-residue contacts					
Include intra-molecule contacts					
Treatment of Clash/Contact Atoms					
Select					
Color 📕 (and color all other atoms 🔊)					
Draw pseudobonds of color and width 2.0					
If endpoint atom hidden, show endpoint residue					
Assign 'overlap' attribute					
Write information to file					
✓ Write information to reply log					
Frequency of Checking					
when OK/Apply clicked					
Check 🔵 after relative motions (until dialog closed)					
 continuously (until dialog closed) 					
OK Apply Close Help					