Challenge in 1878: Structure and dynamics of a horse in motion

Are all four of a horse's hooves off the ground at the same time ?

Eadweard Muybridge, Sacramento, California

Eadweard Muybridge, The Horse in Motion

Today's Challenge: Structure and dynamics of single biomolecules

Ribosome: Harms, & Yonath (2001) Cell 107, 679

OPPORTUNITIES

FOR USING

X-RAY FREE ELECTRON LASERS

IN STRUCTURAL BIOLOGY

Length scales in biology

The study of the structure and dynamics of biological macromolecules (proteins, DNA, ...) and their mutual interactions to understand their function in a biological cell

Protein structures can be determined at atomic resolution by:

courtesy by J.-P. Colletier

Electron microscopy

CONVENTIONAL MACROMOLECULAR X-RAY CRYSTALLOGRAPHY

Collect 100 diffraction images on a single crystal in a few minutes

... CONVENTIONAL X-RAY CRYSTALLOGRAPHY

refined model: average structure

... CONVENTIONAL X-RAY CRYSTALLOGRAPHY

- provides average structure
- needs (large) crystals: problematic for complexes, membrane proteins
- structure determined at non-physiological temperature (100 K)
- chemical and structural X-ray radiation damage
- time-resolved crystallography limited to 100 ps resolution

Would be great to obtain atomic resolution structures from single molecules - no crystals needed

Coherent diffraction imaging (CDI) on single molecules using ultra-short intense X-ray pulses

Single biomolecule hit by intense X-ray pulse

- 1) X-ray photons ionize atoms
- 2) Photoelectrons leave biomolecule
- 3) Protein gets more and more positively charged
- 4) Coulomb explosion after about 50 fs

Diffraction-before-Destruction Imaging Idea: Neutze et al. (2000) Nature 406, 7524

time

Collect data before the sample has time to respond (explode)

Diffraction-before-Distruction Imaging needs enormeous X-ray flux (brilliance)

Solution:

X-ray Free Electron Lasers

XFEL have 10¹⁰ times more peak brilliance than ESRF

Free Electron Laser

Idea of FEL: J. M. J. Madey (1971) J.Appl. Phys.42, 19061

Simplified description of XFEL: Margaritondo & Rebernik (2011) JSR 18, 101

SASE in long undulator (100 m) leads to micro-bunching of electron macro-bunches

Micro-bunches are separated by a distance equal to one radiation wavelength:

Coherent wave is emitted with very high brilliance

X-ray Free Electron Lasers

+ PAL-XFEL (Korea, 2017 ?); Lund (2020 ?); Shanghai; UK?

X-ray free-electron LASER

Wikipedia

X-rays: wavelength 0.1 – 100 Å

X-ray **free-electron** LASER

as opposed to electrons bound to an atom

X-ray free-electron LASER

Similar properties than optical Laser:

- high power
- narrow bandwidth (monochromatic)
- spatial coherence

X-ray free-electron LASER = XFEL

- 10 orders of magnitude higher peak brilliance than synchrotrons
- short pulses (5 100 fs)
- repetition rate: 30 120 Hz (LCLS, SACLA, SwissFEL) 27000 Hz (European XFEL)
- X-ray beam size : 100 nm several microns

Diffraction-before-Destruction Imaging

Neutze et al. (2000) Nature 406, 7524

Promises of XFELs for Structural Biology:

- coherent diffraction imaging of single particles

(Review Miao et al. (2015) Science 348, 530)

- serial femtosecond crystallography (SFX)

(Review Schlichting (2015) IUCrJ 2)

Diffraction-before-Destruction Imaging

Image: Gaffney & Chapman (2007) Science 316, 1444

Diffraction-before-Distruction Imaging: data processing

Essential: Direct phase retrieval by the oversampling technique (Miao et al/ (2001) PNAS 98, 6641)

Essential: Methods from single particle EM

Gaffney & Chapman (2007) Science 316, 1444

doi:10.1038/nature09748

Single mimivirus particles intercepted and imaged with an X-ray laser

LETTER

M. Marvin Seibert¹*, Tomas Ekeberg¹*, Filipe R. N. C. Maia¹*, Martin Svenda¹, Jakob Andreasson¹, Olof Jönsson¹, Duško Odić¹, Bianca Iwan¹, Andrea Rocker¹, Daniel Westphal¹, Max Hantke¹, Daniel P. DePonte², Anton Barty², Joachim Schulz², Lars Gumprecht², Nicola Coppola², Andrew Aquila², Mengning Liang², Thomas A. White², Andrew Martin², Carl Caleman^{1,2}, Stephan Stern^{2,3}, Chantal Abergel⁴, Virginie Seltzer⁴, Jean-Michel Claverie⁴, Christoph Bosted¹⁵, John D. Bozek⁵, Sébastien Boutet⁵, A. Alan Miahnahri⁵, Marc Messerschmidt⁵, Jacek Krzywinski⁵, Garth Williams⁵, Keith O. Hodgson⁶, Michael J. Bogan⁶, Christina Y. Hampton⁶, Raymond G. Sierra⁶, Dmitri Starodub⁶, Inger Andersson⁷, Saša Bajt⁸, Miriam Barthelmess⁸, John C. H. Spence⁹, Petra Fromme¹⁰, Uwe Weierstall⁹, Richard Kirian⁹, Mark Hunter¹⁰, R. Bruce Doak⁹, Stefano Marchesini¹¹, Stefan P. Hau-Riege¹², Matthias Frank¹², Robert L. Shoeman¹³, Lukas Lomb¹³, Sascha W. Epp^{14,15}, Robert Hartmann¹⁶, Daniel Rolles^{13,14}, Artem Rudenko^{14,15}, Carlo Schmidt^{14,15}, Lutz Foucar^{13,14}, Nils Kimmel^{17,18}, Jerter Holl¹⁶, Benedikt Rudek^{14,15}, Benjamin Erk^{14,15}, André Hömke^{14,15}, Christian Reich¹⁶, Daniel Pietschner^{17,18}, Georg Weidenspointner^{17,18}, Lothar Strüder^{14,17,18}, Florian Schoppe^{17,18}, Heike Soltau¹⁶, Kai-Uwe Kühnel¹⁵, Robert Andritschke^{17,18}, Iclaus-Dieter Schröter¹⁵, Faton Krasniqi^{13,14}, Mario Bott¹³, Sebastian Schorb²¹, Daniela Rup²¹, Marcus Adolph²¹, Tais Gorkhover²¹, Helmut Hirsemann⁸, Guillaume Potdevin⁸, Heinz Graafsma⁸, Björn Nilsson⁸, Henry N. Chapman^{2,3} & Janos Hajdu¹

3D reconstruction: Ekeberg et al. (2015) PRL 114, 098102

INTEGRATIVE STRUCTURAL BIOLOGY IN SPACE AND TIME

Coherent diffraction imaging on single molecules using ultra-short intense XFEL pulses ...

... limited today to molecules 1µm – 100 nm (too small: hemoglobin: 5 nm; ribosome 25 nm)

< 100 nm: not enough X-ray flux

> $1\mu m$: saturation of detector at low angle

Still science fiction: structure of single proteins (-complexes), but OK for viruses (> 100 nm) at low resolution

Serial femtosecond crystallography (SFX)

using XFELs

shows great promise

Question :

Does diffraction-before-destruction work in

serial femtosecond crystallography (SFX) at XFELs ?

Question :

Does diffraction-before-destruction work in

serial femtosecond crystallography (SFX) at XFELs ?

X-ray radiation damage to crystalline proteins

produced by intense synchrotron radiation

X-ray radiation damage (synchrotron)

Primary and secondary damage

Primary damage

Secondary damage

Secondary radicals produce specific radiation damage

Disulfide bond cleavage

Decarboxylation

Metal center reduction ...

... within seconds, before full data set is collected

in PDB: many protein structures with reduced redox centers

Dose (Garman) limit in synchrotron-based protein crystallography at 100 K : **30 MGy** Owen *et al.* (2006) *PNAS 103, 4912*

Active site damage

Question :

Does diffraction-before-destruction work in

serial femtosecond crystallography (SFX) at XFELs ?

Serial femtosecond crystallography (SFX) using XFELs

Six hallmark papers

Chapman et al. (**2011**) Nature 470, 73 Femtosecond X-ray protein nanocrystallography

Boutet et al. (**2012**) Science 337, 362 High-resolution protein structure determination by serial femtosecond crystallography

Kern et al. (**2013**) Science 340, 491

Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature

Redecke et al. (**2013**) Science 339, 227 Natively inhibited trypanosoma brucei cathepsin B structure determined by using an X-ray laser

Barends et al. (**2014**) Nature 505, 244 De novo protein crystal structure determination from X-ray free-electron laser data

Tenboer et al. (2014) Science 346: 1242

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Chapman et al. (2011) Nature 470, 73

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R. N. C. Maia⁵, Andrew V. Martin¹, Joachim Schulz', Daniel P. DePonte', Uwe Weierstall', R. Bruce Doak', Filipe R. N. C. Maia', Andrew V. Martin', Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹†, Robert L. Shoeman⁷, Sascha W. Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Fouca^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Sébastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski¹⁹, Christoph Bostedt¹³, Saša Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, André Hömke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Strüder^{6,10}, Günter Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai–Uwe Kühnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³ Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond G. Sierra¹⁴, Dmitri Starodub¹⁴, Garth J. Williams¹³, Janos Hajdu⁵, Nieuwer⁵, M. Martin Scibastor M. Margins, Scibastor Andreascon⁵, Andrea Bocka²⁶, Olof (Enseon⁵), (Lartin Stenhan Stenhan Stenp¹ Nicusor Timneanu⁵, M. Marvin Seibert⁵†, Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jönsson⁵, Martin Svenda⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schröter⁸, Faton Krasniqi^{6,7}, Mario Bott⁷, Keyn E. Schmidt⁴, Xiao Diffs⁴ action-before-destruction works Ingo Grotjohann³, James M. Holton¹⁷, Thomas R. M. Barends⁷, Richard Neutze¹⁸, Stefano Marchesini¹⁷, Raimund Fromme, Action-before-destruction works Sebastian Schorb¹⁹, Daniela Rupp¹⁹, Marcus Adolph¹⁹, Tais Gorkhover¹⁹, Inger Andersson²⁰, Helmut Hirsemann¹², Guillaume Potdevin12, Heinz Graafsma12, Björn Nilsson12 & John C. H. Spence4

- nanocrystals (200 nm 1 μ m) of photosystem I (membrane protein)
- XFEL pulse at room temperature: 7Å, 70 fs
- 1.85 million XFEL shots > 112725 hits (6%) > 15445 indexed images (14%)
- no global radiation damage

after single 70 fs shot at 670 MGy / pulse (20x Garman limit – 30 MGy)

molecular replacement: maps at 8 Å

High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

Sébastien Boutet, ¹⁺ Lukas Lomb, ^{2,3} Garth J. Williams, ¹ Thomas R. M. Barends, ^{2,3} Andrew Aquila, ⁴ R. Bruce Doak, ⁵ Uwe Weierstall, ⁵ Daniel P. DePonte, ⁴ Jan Steinbrener, ^{2,3} Robert L. Shoeman, ^{2,3} Marc Messerschmidt, ¹ Anton Barty, ⁴ Thomas A. White, ⁴ Stephan Kassemeyer, ^{2,3} Richard A. Kirian, ⁵ M. Marvin Seibert, ¹ Paul A. Montanez, ¹ Chris Kenney, ⁶ Ryan Herbst, ⁶ Philip Hart, ⁶ Jack Pines, ⁶ Gunther Haller, ⁶ Sol M. Gruner, ^{7,8} Hugh T. Philipp, ⁷ Mark W. Tate, ⁷ Marianne Hromalik, ⁹ Lucas J. Koerner, ¹⁰ Niels van Bakel, ¹¹ John Morse, ¹² Wilfred Ghonsalves, ¹ David Arnlund, ¹³ Michael J. Bogan, ¹⁴ Carl Caleman, ⁴ Raimund Fromme, ¹⁵ Christina Y. Hampton, ¹⁴ Mark S. Hunter, ¹⁵ Linda C. Johansson, ¹³ Gergely Katona, ¹³ Christopher Kupitz, ¹⁵ Mengning Liang, ⁴ Andrew V. Martin, ⁴ Karol Nass, ¹⁶ Lars Redecke, ^{17,18} Francesco Stellato, ⁴ Nicusor Timneanu, ¹⁹ Dingjie Wang, ⁵ Nadia A. Zatsepin, ⁵ Donald Schafer, ¹ James Defever, ¹ Richard Neutze, ¹³ Petra Fromme, ¹⁵ John C. H. Spence, ⁵ Henry N. Chapman, ^{4,16} Ilme Schlichting^{2,3}

- microcrystals (1 μm) of HEWL
- XFEL pulse at room temperature: 1.3 Å, 40 fs, 33 MGy / pulse
- 1.5 million XFEL shots > 4.5% hit rate > 18% indexing rate (12500 images)
- molecular replacement: maps at 1.9 Å

Novelty:

First high-resolution SFX

Fobs (XFEL, 33 MGy) - Fobs (synchrotron, 24 kGy)

Boutet et al. (2012) Science 337, 362

No specific structural radiation damage

Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

Jan Kern,^{1,2} Roberto Alonso-Mori,² Rosalie Tran,¹ Johan Hattne,¹ Richard J. Gildea,¹ Nathaniel Echols,¹ Carina Glöckner,³ Julia Hellmich,³ Hartawan Laksmono,⁴ Raymond G. Sierra,⁴ Benedikt Lassalle-Kaiser,^{1*} Sergey Koroidov,⁶ Alyssa Lampe,¹ Guangye Han,¹ Sheraz Gul,¹ Dörte DiFiore,³ Despina Milathianaki,² Alan R. Fry,² Alan Miahnahri,² Donald W. Schafer,² Marc Messerschmidt,² M. Marvin Seibert,² Jason E. Koglin,² Dimosthenis Sokaras,⁶ Tsu-Chien Weng,⁶ Jonas Sellberg,^{6,7} Matthew J. Latimer,⁶ Ralf W. Grosse-Kunstleve,¹ Petrus H. Zwart,¹ William E. White,² Pieter Glatzel,⁶ Paul D. Adams,¹ Michael J. Bogan,^{2,4} Garth J. Williams,² Sébastien Boutet,² Johannes Messinger,⁵ Athina Zouni,³ Nicholas K. Sauter,¹ Vittal K. Yachandra,¹† Uwe Bergmann,²† Junko Yano¹† Kern et al. (2013) Science 340, 491

Novelty:

Combining SFX and spectroscopy: no electronic radiation damage

Metal center (here Mn₄CaO₅ cluster of PS II) retains intact electronic structure in XFEL SFX doi:10.1038/nature12773

De novo protein crystal structure determination from X-ray free-electron laser data

Barends et al. (2014) Nature 505, 244

Thomas R. M. Barends¹, Lutz Foucar¹, Sabine Botha¹, R. Bruce Doak^{1,2}, Robert L. Shoeman¹, Karol Nass¹, Jason E. Koglin³, Garth J. Williams³, Sébastien Boutet³, Marc Messerschmidt³ & Ilme Schlichting¹

- microcrystals (1 μm) of HEWL
- HEWL in complex with lanthanide compound (Girard et al. (2002) Acta D58, 1)
- 2.5 million XFEL shots > 8 % hit rate > 31% indexing rate (60000 images)
- SAD phasing: maps at 2.1 Å

Pump-and-probe SFX

Aquila et al (2012) Optics Express 20, 2706

STRUCTURAL BIOLOGY

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer,¹ Shibom Basu,² Nadia Zatsepin,³ Kanupriya Pande,¹ Despina Milathianaki,⁴ Matthias Frank,⁵ Mark Hunter,⁵ Sébastien Boutet,⁴ Garth J. Williams,⁴ Jason E. Koglin,⁴ Dominik Oberthuer,⁶ Michael Heymann,⁷ Christopher Kupitz,²† Chelsie Conrad,² Jesse Coe,² Shatabdi Roy-Chowdhury,² Uwe Weierstall,³ Daniel James,³ Dingjie Wang,³ Thomas Grant,⁸ Anton Barty,⁷ Oleksandr Yefanov,⁷ Jennifer Scales,¹ Cornelius Gati,^{6,7} Carolin Seuring,⁶ Vukica Srajer,⁹ Robert Henning,⁹ Peter Schwander,¹ Raimund Fromme,² Abbas Ourmazd,¹ Keith Moffat,^{9,10} Jasper J. Van Thor,¹¹ John C. H. Spence,³ Petra Fromme,² Henry N. Chapman,^{6,7} Marius Schmidtl¹‡

Tenboer et al. (2014) Science 346, 1242

Novelty:

First time-resolved SFX (limited to nanoseconds)

Pump laser XFEL

Image courtesy: James Holton

Time-resolved pump – probe crystallography: synchronization needed

Courtesy James Holton

Time-resolved crystallography: pump-probe

Aim: visualize structural changes in crystalline proteins (e.g. enzymatic intermediate states)

Triggering (pump): - UV-vis light illumination

(inherent light sensitivity or caged compounds)

- diffusion of small molecules
- pH jump
- X-irradiation
- THz irradiation

Future :

Femtosecond movies of proteins at work

00

limited to 100 ps

XFEL SFX – progress so far:

- SFX works - high resolution protein structures can be obtained

- micron-sized protein crystals can be used (macrocrystals are often very difficult to obtain)
- data collection at physiological (room) temperatures (100 K in most synchrotron experiments)
- de novo phasing is possible
- radiation-damage free protein structures can be determined
- proof-of-principle for time-resolved SFX

Challenges :

- generation and detection of protein microcrystals
- microcrystal injection
- protein sample consumption
- data processing (CrystFEL, cctbx.xfel): Monte Carlo integration, no estimate of partiality, requires lots of images
- phasing (only SAD with lanthanides worked so far why ?)
- specific radiation damage still occurs (attenuate XFEL beam)
- time-resolved experiments faster than 1 ns

Review: Schlichting. (2015) *IUCrJ* 2

Discussion Meeting Issue 'Biology with free-electron X-ray lasers' organized and edited by John C. H. Spence and Henry N. Chapman July 17, 2014; 369 (1647) DISCUSSION OF THE ROYAL BIOLOGICAL SOCIETY

- BEAM TIME (only one beamline at LCLS and SACLA, cost: 400 kUSD per 12h)

XFEL SFX does not replace, but complements synchrotron crystallography

Serial synchrotron crystallography

Gati *et al.* (2014) IUCrJ 1, 78 Stellato *et al.* (2014) IUCrJ 1, 204 Heyman *et al.* (2014) IUCrJ 1, 349 Nogly *et al.* (2015) IUCrJ 2 Botha et al. (2015) ActaD71, 387 Coquelle et al. (2015) ActaD71, 1184

Solid support at ESRF Coquelle et al. (2015) ActaD71, 1184

Slow extrusion injector at SLS Botha et al. (2015) ActaD71, 387

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins (membrane proteins, protein complexes, ...)
- in vivo crystallography
- Room temperature crystallography (preserves conformational heterogeneity)
- Damage-free structures of radiation sensitive proteins (metalloproteins, chromophore-containing proteins, ...)
- Time-resolved experiments on ps-fs time sales

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins
- *in vivo* crystallography
- Room temperature crystallography
- Damage-free structures
- Time-resolved experiments

Wacker et al. (2013) Science 340, 615

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins
- *in vivo* crystallography
- Room temperature crystallography
- Damage-free structures
- Time-resolved experiments

Naturally occurring nanocrystals of the cry3A toxin from bacillus thuringiensis

Sawaya et al. (2014) PNAS 111, 12771

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins
- *in vivo* crystallography
- Room temperature crystallography
- Damage-free structures
- Time-resolved experiments

Room temperature crystallography preserves physiological conformational heterogeneity

Fraser et al. (2011) PNAS 108, 16247

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins
- *in vivo* crystallography
- Room temperature crystallography
- Damage-free structures
- Time-resolved experiments

Mn_4CaO_5 cluster of crystalline photosystem II retains intact electronic structure

- 150 MGy / xtal
 (5x Garman limit in synchrotron MX at 100 K)
- short XFEL pulse even outruns electronic damage
- good news for radiation sensitive proteins (metalloproteins, chromophore containing, ...)
- See also Hirata *et al.* (2014) Nat Methods 11, 734 Suga *et al.* (2015) Nature 517, 99

Kern et al. (2013) Science 340, 491

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins
- *in vivo* crystallography
- Room temperature crystallography
- Damage-free structures
- Time-resolved experiments

French project: Femtosecond movies of reversibly photoswitchable fluorescent proteins

Photoswitchable fluorescent proteins: Markers in super-resolution microscopy

Hell, Nature 2011

Goal: Understand photoswitching mecanism to optimize fluorescent proteins for super-resolution microscopy

Tracking ultrafast protein structural dynamics with time-resolved WAXS

Levantino, Schirò, ..., Cammarata (2015) Nature Communications 6, 6772

Combining X-ray and optical lasers at LCLS/XPP

Five applications of XFEL SFX that can't (easily) be done at a synchrotron

- Microcrystals of fragile proteins (membrane proteins, protein complexes, ...)
- in vivo crystallography
- Room temperature crystallography (preserves conformational heterogeneity)
- Damage-free structures of radiation sensitive proteins (metalloproteins, chromophore-containing proteins, ...)
- Time-resolved experiments on ps-fs time sales

- single-protein CDI does not work (yet ?)
- SFX works and provides high-resolution protein structures
- 5 applications: microcrystals
 - in vivo xtallo
 - room temperature
 - damage-free structures
 - femtosecond movies
- XFEL SFX and synchrotron crystallography are complementary
- French structural biology needs to catch the accelerating XFEL train