

Toward Saccharomyces cerevisiae telomere architecture: an integrated structural biology study.

M-H Le Du

Laboratoire de Biologie Structurale et Radiobiologie (CEA/Saclay)

Telomeres:

- Terminal protein-DNA complexes of linear eukaryotic chromosomes
- ✓ Does NOT code for any genetic information
- ✓ Protects the chromosomal ends from:
 - Recombination
 - End-to-end fusion (NHEJ)
 - Recognition as damaged DNA
- ✓ Controls the terminal replication of chromosomal DNA
 - Contributes to the functional organization of chromosomes in the nucleus
 - ✓ Participates in regulation of gene expression
- ✓ Serves as "mitotic clock": shortens with each cell division

Replication problem:

Natural shortening upon cell divisions

(based on Gilson E. & Géli V., 2007)

CNIS

Marcand S & al (1997), Teixeira M.T. & al. (2004)

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Telomerase activation

TG₁₋₃ repeats

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Telomerase activation

TG₁₋₃ repeats

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Telomerase activation

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Adapted from Giraud-Panis M-J, Pisano S, Poulet A, Le Du M-H, and Gilson E. FEBS Lett 2010, 584(17):3785-3799.

Rap1 (Repressor Activator Protein 1)

- 3 domains (BRCT, DBD, RCT)

- \approx 40 % of the sequence predicted as unstructured

Highly flexible molecule

Telomere is a highly dynamic nucleo-protein assembly, centered around a highly flexible protein

Our hypothesis : Rap1 flexibility allows conformational adjustments upon DNA binding which optimize its ability to form specific functional quaternary structures.

Rap1/DNA interaction:

1 Rap1 every 18 pb (Gilson et al., 1993)

Signature of DNA melting

Rap1/DNA interaction:

1 Rap1 every 18 pb (Gilson et al., 1993)

Signature of DNA melting

Presence of Rap1 is associated to DNA bending of ≈ 50°

(Gilson et al., 1993)

Do not agree with DBD/DNA crystal structure

Crystallization

2 crystal forms

Crystal structure analysis

PRECIMAN				
Collection de données	P2 ₁ 2 ₁ 2 ₁	I2 ₁ 2 ₁ 2 ₁		
Résolution	2,95 Å (3,13 Å – 2,95 Å)	2,99 Å (3,17 Å – 2,99 Å)		
Paramètres de maille	40,6 x 102,9 x 116,8	63,8 x 122,6 x 149,4		
	90 x 90 x 90	90 x 90 x 90		
R _{merge}	0,138 (0,688)	0,121 (0,701)		
Nombre de réflections uniques	9831	11279		
I/σ	14,32 (3,39)	16,61 (3,09)		
Complétude	90,1 (68,8)	92,4 (78,7)		
Remplacement moléculaire	Phaser	Phaser		
	1 solution unique (LLG = $1305,76$)	1 solution unique (LLG = 905)		
Affinement	Buster5	Buster5		
Résolution	2,95 Å	2,99 Å		
R _{factor}	0,1923	0,2044		
R _{free}	0,2650	0,2690		
Figure de mérite	0,869	0,873		
Rmsd Bond	0,0010	0,0010		
Rmsd angle	1,48	1,40		
Nombre de molécules d'eau	6	12		
Nombre de résidus	223	218		
Nombre de bases	62	60		

Crystal structure analysis

DNA distortion analysis.

The observed distortion at the hypersensitive Cyt20 is too small to explain the KMnO₄ reactivity.

CNIS

Rap1 induced hypersensitivity to KMnO₄

Rap1 induced hypersensitivity to KMnO₄

Anomalous signal analysis of RAP1/DNA /KMnO₄ crystals

Oligonucleotide	5' -ACCTGGTGTGTGGGGTGTTGTGTGTGTGTGTCAC -3' 3' -GACCACACACCCCACAACACACCACAAGTGTG -5'				
Data collection	KMnO4				
Wavelength (Å)	1.89				
Space-group	P2 ₁ 2 ₁ 2 ₁				
Diffraction limits	4.1 Å (4.32 - 4.10 Å)				
(last shell)					
Unit cells	40.6x103.2x115.7				
(axbxcxαxβxγ)	90x90x90				
R _{merge}	0.149 (0.376)				
Number of	4148				
unique reflections					
I/σ	7.0 (2.8)				
Completeness	99.8 (100.0)				
R _{work}	0.1973				
R _{free}	0.3265				
Figure of merit	0.928				
RMSD bond	0.011				
RMSD angles	1.55				

Possible model of interaction

Biological analysis

Ability of the rap1 alleles to complement Rap1 loss in yeast cultures.

Western blot comparing Rap1 amount in the different strains

Mutation R580A does not affect cells viability.

Collaboration Rachel Lescasse, Stéphane Marcand, CEA Fontenay

Rap1 induced hypersensitivity to KMnO4

Isothermal calorimetry (ITC) titration of Rap1 or Rap1 [R580A] by DNA.

KMnO₄ footprinting showing the role of Arg580 in Rap1 hypersensitivity

Le Bihan Y-V et al., Acta Crystallographica-D, 2013.

Rap1 induced hypersensitivity to KMnO4

Residues involved in Cyt20 distortion are 100% conserved among double-myb containing Rap1 proteins.

Le Bihan Y-V et al., Acta Crystallographica-D, 2013.

Permanganate potassium hypersensitivity induced upon Rap1 DNA binding is driven by Arg580 that plugs DNA major groove.

Residues involved in Cyt20 distortion as well as Arg580 are fully conserved among double-myb containing Rap1.

→ New questions:

The KMnO₄ hypersensitivity is a useful biochemical artefact. Why the residues involved in the distortion of hypersensitive nucleic acid are they so conserved? Which function could sign this distortion ?

(No methylation of telomere DNA)

DNA bending analysis.

Rap1 binding at telomere fiber.

Atomic Force Microscopy (AFM) experiments. Scale bars corresponds to 200 nm (A, B) and 100 nm (C-F)

Analysis of DNA curvature using the ratio between curvilinear (S) and direct (D) distances.

Binding of Rap1 is associated to local DNA stiffening.

The local bending observed in the crystal structure does not propagate along DNA fiber

What is the architecture associated to this binding ?

Le Bihan Y-V, et al.,. Acta Crystallographica-D, 2013. Oléron, 2015/06/05 Collaboration Olivier Pietrement, Eric Le Cam, IGR Villejuif

Cea

RAP1: available structural data

Remaining questions:

Structural approaches :

Structural approaches :

Our approach:

First step: inter-domains interaction analysis

First step: inter-domains interaction analysis

No detectable interaction between N-ter and DBD-Cter moieties

Oléron, 2015/06/05

CNrs

Intermediate information:

No detectable interaction between RCT and N-ter region No detectable interaction between N-ter and DBD-Cter moieties

Combination of SAXS and AUC

Structural analysis of Rap1 full-length:

- ✓ Monomers only
- No complex dissociation V
- Progressive introduction of N-ter region **V** associated to more flexible and elongated molecules
- DNA/Protein complexes associated to **V** more compact objects

Diffusion aux petits angles : approche *ab initio*

Détermination d'enveloppes ab initio : DAMMIN

Cycle 1 : Rf = 0.8857 Cycle 5 : *Rf* = 0.8819 *Cycle 10 : Rf = 0.8587 Cycle 15 : Rf = 0.0436 Cycle 20 : Rf = 0.0276 Cycle 25 : Rf = 0.0258 Cycle 30 : Rf = 0.0240 Cycle* 35 : *Rf* = 0.0137 *Cycle 40 : Rf = 0.0104 Cycle 45 : Rf = 0.0107* Cycle 50 : Rf = 0.0089 *Cycle* 51 : *Rf* = 0.0090 *Cycle* 52 : *Rf* = 0.0095 *Cycle* 53 : *Rf* = 0.0095 *Cycle 54 : Rf = 0.0095* $\chi^2 = 2.06$

Ceremon Progressive construction of Rap1 and Rap1/ DNA

SAXS: ab initio approach

Conserved DBD-RCT region

Progressive introduction of N-ter region associated to envelop elongation

Progressive construction of Rap1 and Rap1/ DNA

Progressive construction of Rap1 and Rap1/ DNA

41

de la recherche à l'industrie

Structural analysis of Rap1 full-length:

AUC friction coefficients Program SEDFIT (Schuck, P., 2000)

- Rap1[358-827]
- Rap1[358-827]-DNA
- Rap1[117-827]
- Rap1[117-827]-DNA

Rap1[1-827]-DNA

- ✓ Monomers only
- No complex dissociation
- Progressive introduction of N-ter region associated to higher friction coefficient

Rap1 and Rap1/DNA

	construct	Rap1 _{[358-}	Rap1 _{[117-}	Rap1	Rap1 _{[358-} ₈₂₇₁ /DNA	Rap1 _{[117-} ₈₂₇₁ /DNA	Rap1/DNA
	Th. MW (kDa)	55	82	92	67	94	105
	Partial specific volume (ml/g)	0.717	0.712	0.710	0.689	0.693	0.693
AUS	[Sample] (mg/ml)	0.55, 1.1, 2.2	0.82, 1.64, 3.11	0.56, 0.94, 1.4, 1.88, 2.81, 3.74	0.67, 1.35, 2.02	0.56, 0.94, 1.88, 2.81	0.63, 1.06, 2.12, 3.17, 4.23
	MW (kDa)	55	82	94	67	94	106
	Sed coef	3.67	3.76	3.88	4.23	4.29	4.24
SAX	[Sample] (mg/ml)	1, 3.2	1.8, 2.5	1.1 ^ª	9	$\begin{array}{ccc} 0.7, & 1.4, \\ 2.8, 4.1 \end{array}$	1.2 ^a
	Rg (Å)	32.7	58.1	67.4	40.6	71.6	72.4
	Dmax (Å)	120	224	260	162	275	260
	Calc sed coef	3.55	3.75	3.97	4.21	4.31	4.23

Validation of SAXS models by comparison of calculated and experimental sedimentation coefficients. Convergence between SAXS and AUC analysis increases the reliability of the result.

Structural analysis of Rap1 full-length:

Matot, Le Bihan, et al., Nucl Acid Res, 2012.

Remaining question:

Crystal structure

46

Crystal structure

Segment 591-597 locks Rap1 around DNA.

Analysis of Rap1 wrapping determinants

Mutation Y592A-K597A or deletion of segment 591-597 affects DNA binding.

Oléron, 2015/06/05

ΔG

T∆S

Analysis of Rap1 wrapping determinants

Ka (M⁻¹)

ΔG

T∆S

Relative Ka

 ΔH (kcal/mol)

 6.8 ± 0.04

17.6

Mutation Y592A-K597A or deletion of segment 591-597 affects DNA binding.

 6.8 ± 0.07

17.3

Oléron, 2015/06/05

 18.6 ± 0.1

28.6

Conclusions :

Interaction of Rap1 with DNA induces a complete wrapping of the protein around DNA, and a stiffening of DNA fiber.

Mutation or deletion of region that locks the protein around DNA: → Affects Rap1 affinity for DNA. → Affects Rap1 functional integrity.

Toward telomeric assembly

Toward telomeric assembly

DBD/DNA interaction

Toward telomeric assembly

Toward telomeric assembly

Toward telomeric assembly

Toward telomeric assembly

Toward telomeric assembly

RCTs remain accessible to protein partners

BRCT-DNA distance ≈ 50 Å

Matot, Le Bihan, et al., Nucl Acid Res, 2012.

New arising questions:

Stéphane Marcand Rachel Lescasse

IRCAN (Nice)

Marie-Josèphe Giraud-Panis Eric Gilson

<u>IGR</u>

Eric Le Cam

Andrew Thompson

Javier Pérez Gabriel David Pierre Roblin

PROXIMA1

INSTITUT PASTEUR

Ahmed Haouz Patrick Weber

Pasteur, PF6

Pasteur, PFBMI

Bertrand Raynal

BPA LBPA (Cachan) Bianca Sclavi

<u>CBM (Orléans)</u> Bertrand Castaing

Thank you !!

