Structure determination of macromolecular assemblies by solid-state NMR

Antoine LOQUET

CBMN - Chemistry & Biology of Membranes & Nano-objects, CNRS **IECB** - Institut Européen de Chimie et Biologie, Bordeaux

Structure determination of macromolecular assemblies by solid-state NMR

Non covalent assembly of multiple copies of subunits into a large suprastructure

Self-organizations, supramolecular assemblies Macromolecular assemblies, macromolecular complexes

Mesoscopic scale:

- . Fibrils
- . Filaments, protofilaments . Nanotubes
- . Oligomers
- . Aggregates, etc.

. Crucial in many fundamental cellular processes:

Propagation of information, protein transport, bacterial and viral infection, cell motility, etc.

. Assembly driven by weak interactions, but they are usually well defined in morphology

THE STATE-OF-THE-ART APPROACH

LETTER

doi:10.1038/nature09372

Direct visualization of secondary structures of F-actin by electron cryomicroscopy

K. Namba Nature 2010

F-actin: 6.6 À

THE STATE-OF-THE-ART APPROACH

LETTER

doi:10.1038/nature09372

Direct visualization of secondary structures of F-actin by electron cryomicroscopy

K. Namba Nature 2010

. Native conformation / refolding upon the assembly ?

. Subunit-subunit interfaces ?

Assumptions are required to generate
3D models

3D MODELS FROM CRYSTAL STRUCTURE

see Eisenberg and co.

Urgent need for new approaches to investigate self-assemblies in the intact assembled state at atomic resolution

SOLID-STATE NMR (SSNMR)

SSNMR rotors

Magic-angle spinning

High resolution

SOLID-STATE NMR (SSNMR)

SSNMR rotors

 B_0

Magic-angle spinning

High resolution

30 ppm

. Neither longe-range order nor solubility required

. Solid to semi-solid samples

. Proteoliposomes, oligomers, fibrils, filaments, precipitates, gels, frozen solutions, nanoparticles, etc...

Solid-state NMR and structural biology

SSNMR & STRUCTURAL BIOLOGY

Cristalline samples

1st SSNMR assignment

Journal of Biomolecular NMR, 16: 209–219, 2000. KLUWER/ESCOM

© 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Partial NMR assignments for uniformly (¹³C, ¹⁵N)-enriched BPTI in the solid state

Ann McDermott^{a,*}, Tatyana Polenova^{a,**}, Anja Bockmann^{a,***}, Kurt. W. Zilm^{b,*}, Eric K. Paulsen^b, Rachel W. Martin^b & Gaetano T. Montelione^c

2003 SSNMR on protein nanocrystals

Available online at www.sciencedirect.com

Journal of Magnetic Resonance 165 (2003) 162-174

www.elsevier.com/locate/jmr

Preparation of protein nanocrystals and their characterization by solid state NMR

Rachel W. Martin and Kurt W. Zilm*

2002 1st protein structure (microcrystals)

letters to nature

Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy

Federica Castellani, Barth van Rossum, Annette Diehl, Mario Schubert, Kristina Rehbein & Hartmut Oschkinat

2008 Uniformly ¹³C/¹⁵N labeled samples

3D Structure Determination of the Crh Protein from Highly Ambiguous Solid-State NMR Restraints

Antoine Loquet,[‡] Benjamin Bardiaux,[#] Carole Gardiennet,[‡] Christophe Blanchet,[‡] Marc Baldus,[§] Michael Nilges,[#] Thérèse Malliavin,[#] and Anja Böckmann^{*,‡}

Protein Structure Determination from ¹³C Spin-Diffusion Solid-State NMR Spectroscopy

Theofanis Manolikas,[†] Torsten Herrmann,[‡] and Beat H. Meier^{*,†}

2015 Sub-mg microcrystalline protein

De Novo 3D Structure Determination from Sub-milligram Protein Samples by Solid-State 100 kHz MAS NMR Spectroscopy**

Vipin Agarwal, Susanne Penzel, Kathrin Szekely, Riccardo Cadalbert, Emilie Testori, Andres Oss, Jaan Past, Ago Samoson,* Matthias Ernst,* Anja Böckmann,* and Beat H. Meier*

Amyloid fibrils

2002

Amyloid fibril: 3D model

A structural model for Alzheimer's β -amyloid fibrils based on experimental constraints from solid state NMR

Aneta T. Petkova*, Yoshitaka Ishii*[†], John J. Balbach*, Oleg N. Antzutkin[‡], Richard D. Leapman[§], Frank Delaglio*, and Robert Tycko*¹

2005 Structure - polymorphism - toxicity

Science

quiescent

agitated

AAAS

Self-Propagating, Molecular-Level Polymorphism in Alzheimer's β-Amyloid Fibrils

Aneta T. Petkova,¹ Richard D. Leapman,² Zhihong Guo,³ Wai-Ming Yau,¹ Mark P. Mattson,³ Robert Tycko^{1*}

Amyloid fibril: atomic structure

Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core

Christian Wasmer,* Adam Lange,* Hélène Van Melckebeke,* Ansgar B. Siemer,† Roland Riek, Beat H. Meier‡

2008

Amyloid beta in brain tissue

Molecular Structure of β-Amyloid Fibrils in Alzheimer's Disease Brain Tissue

Jun-Xia Lu,¹ Wei Qiang,¹ Wai-Ming Yau,¹ Charles D. Schwieters,² Stephen C. Meredith,³ and Robert Tycko^{1,*}

Cell

2013

Membrane proteins

2013 Membrane protein structure

Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein

Shenlin Wang^{1,2}, Rachel A Munro^{1,2}, Lichi Shi^{1,2,6}, Izuru Kawamura^{1,6}, Takashi Okitsu³, Akimori Wada³, So-Young Kim^{4,5}, Kwang-Hwan Jung^{4,5}, Leonid S Brown^{1,2} & Vladimir Ladizhansky^{1,2}

2012 In-cell SSNMR of membrane proteins

Cellular solid-state nuclear magnetic resonance spectroscopy

Marie Renault^a, Ria Tommassen-van Boxtel^b, Martine P. Bos^b, Jan Andries Post^c, Jan Tommassen^{b,1}, and Marc Baldus^{a,1}

New SSNMR approaches to tackle macromolecular protein assemblies

¹³C SPIN DILUTION

Dilution of the ¹³C spin network to reach ultra-sparsely labeled materials

J. Am. Chem. Soc. 2011

ULTRA HIGH RESOLUTION SSNMR

Type III Secretion System Needle

J. Am. Chem. Soc. 2011

SPIN DILUTION + 3D SPECTROSCOPY

NMR assignment & secondary structure from a single 3D

J. Biomol. NMR 2013

DETECTION OF DISTANCE RESTRAINTS

Type III Secretion System Needle PDSD 850ms

DETECTION OF DISTANCE RESTRAINTS

Unambiguous assignment of ¹³C-¹³C and ¹⁵N-¹³C distances

DETECTION OF DISTANCE RESTRAINTS

Unambiguous assignment of ¹³C-¹³C and ¹⁵N-¹³C distances

Distinction between intra-subunit and inter-subunit restraints

Unambiguous detection of supramolecular interactions

CONCEPT OF THE METHOD

J. Am. Chem. Soc. **2010** *Nature* **2012**

Acc. Chem. Res. 2013

AMYLOID FIBRILS

J. Am. Chem. Soc. 2010

HELICAL FILAMENTS

Acc. Chem. Res. 2013

BUILDING-BLOCK STRUCTURE

J. Am. Chem. Soc. 2013

HELICAL HANDEDNESS

- Right-handed filaments
- Axial rise per unit of 4.16 ± 2.1 Å (SSNMR)
- Axial rise per unit of 4.2 Å (STEM)

J. Am. Chem. Soc. 2013

Towards atomic structures of complex biological supramolecular assemblies

TOWARDS HYBRID APPROACHES

Protocols to combine cryo-EM and SSNMR

Nature Comm. 2014

9.8 %

Shortest inter-atomic distance (A)

TOWARDS COMPLEX ASSEMBLIES

Submitted

Comparison SSNMR assignments vs. LSNMR data

Submitted

AMYLOID FIBRILS IN APOPTOSIS

NWD2 amyloid fibrils

PRACTICAL ASPECTS

 \cdot 1-20mg for ¹³C / ¹⁵N detection . Sample quantity: . few mg for ¹H detection, but: . you need to perform deuteration . use small rotor . distance restraints are more difficult to measure . from solid to semi-solid (no liquid !) . Sample state: . as concentrated as possible . site-specific study: up to 350 residues . Molecular size: . structure determination: up to 150-200 residues . no limitation on the object size

. Structural order:

- . as high as possible, to limit the number of conformers . standard MAS SSNMR: rigid part of the protein . J-based MAS SSNMR: mobile regions