Useful hints:

To get a screenshot from your displayed images: Maj cmd 4 → selection; Maj cmd 3 → full screen Capture screen shots under Mac: Control-Shift-4 → select region of interest with mouse Control-Shift-3 → full screen shot Display in imagic: use " * " or "quit" to leave, NOT CTRL C;

Use CTRL Z and bg / fg to create batch job or bring it back

To start Imagic:

i

[shortcut for starting IMAGIC program]

To start a display:

<u>disp</u> [under linux or within IMAGIC]		
Input image file, loc#s [checker_8]	: file_name	
Size of the display window [600,600]	:	[hit return for default]
Type of cursor:		
CROSS SQUARE CIRCLE		
Please specify option [CROSS]	:	[hit return for default]
Parameters to be changed:		
NO_CHANGES(=DISPLAY), SETTINGS,	OPTIONS [NO] :	[hit return for default]
To adjust scale of display:		
scale		
4		

Other useful options in command window of display:

grey [to adjust the dynamic range of the image] interactive 0,0 [full range] or for example -10,10 [limited range] file [read in another file] filename dev [device, size of display window] 600,1200 erase [removes displayed image, to display freshly another one] <u>profile</u> [to make profile] Use cursor to position profile: NO Starting point (IMAGE coordinates X,Y): 1,1 End point (IMAGE coordinates X,Y): 65,65 [center of a 128,128 image, i.e. center of powerspectrum]

 To start a second display:

 Ctrl Z

 bg
 [background, batch job]

 To quit the display:

 *
 [or]
 quit
 very import!!! (otherwise display problems)

reactivate a background job: fg [foreground], then stop it with * or quit

When interpreting the results, consider that the absolute scales on the y-axis can be different!

1

II. Pre-processing:

<u>a) Display a digitized micrograph / negative or CMOS camera image of single particles imaged</u> <u>by cryo-EM</u>

In your team directory:

cp ../micrograph/* . boxer &

read in one of the files called 1.mrc:

File \rightarrow read Micrograph

Process→ Median Filter 5x5 (makes a block convolution) adjust grey values/contrast: middle mouse button do you see anything? now better?

change scale to **0.4**

change box size to 80 or 128 [adjust box size to the particle size: should be $\sim 2/3$ of the image size; will be smaller than 128 if you use the **1.mrc** image from the CMOS camera; ideally, values of the type of 64, 96, 128, 256, 512, 1024, 2048, 4096 etc. should be used for fast Fourier transform calculations)

select ~6-10 particles

Boxes \rightarrow Autobox, adjust parameters for a reasonable selection and let it select automatically; afterwards, deselect some bad images manually

b) Calculate a power-spectrum:

ctfit

→ Open particle set

File name: 1_ptcl

Adjust grey values to see the power-spectrum better, adjust parameters to make the predicted spectrum fit with experimental spectrum, adjust defocus value to make the high-resolution peaks fit (not the first peak and first zero which contain information from the particle itself, e.g. secondary structure elements)

Compare with power-spectra from other defocus values: file names: 7_ptcl 9_ptcl 10_ptcl

III. Processing of real experimental data

The basic steps of a structure determination of single particles:

a) pre-process the data: bandpass-filter

b) centering / alignment

c) multivariate statistical analysis (MSA) and classification

d) angle assignment

e) 3D reconstruction

In your team directory:

cp ../data/* .

1) display particle set:

disp [under linux or within IMAGIC]

Input image file, loc#s [] : CMOS_ctf-append_500		
Size of the display window [600,600] :		[hit return for default]
Type of cursor:		
CROSS SQUARE CIRCLE		
Please specify option [CROSS] :		[hit return for default]
Parameters to be changed:		
NO_CHANGES(=DISPLAY), SETTINGS, OPTIONS [NO]	:	[hit return for default]

To start a second display: Ctrl Z

2) bandpass-filter [shortcut for starting IMAGIC program] IMAGIC-COMMAND : inc-pre ** INCPREP (vs. 21-May-2007) welcomes you ** Use MPI parallelisation [NO] : NO [hit return for default] Input file, image loc#s [ctf-append 1000] : CMOS ctf-append 500 Output file, image loc#s [ctf-append 1000-bp] : CMOS ctf-append 500-bp The image will be band-pass filtered. Please specify: Low frequency cut off [] [roughly particle size, pixel size: 3Å, Nyquist 6Å] 0.025 Remaining low-freq. transmission [] : 0.1 [leave 10% of low frequencies] High frequency cut off [] : [high frequency cut off] 0.5 The image will be masked by a circle. Please specify the mask radius (pixels or fraction of inner radius) If you specify a drop-off it will be a soft mask. Mask radius, drop-off [] : 0.999 [keep maximum to the edge of a circular area] Desired new sigma [] : [normalise the variance to 3 sigma] 3 Invert the image densities [NO] : [hit return for default]

Display the filtered version of the particles for comparison

3) calculate the total sum of the particle images which will serve as a reference for particle centering

IMAGIC-COMMAND : inc-sum

** SUMMER (vs. 14-June-2007) welcomes you **

 Mode of summing:
 CONDITIONAL_SUM SOME_SUM TOTAL_SUM

 Please specify option [TOTAL_SUM] :
 [hit return for default]

 Input file, NO loc#s [] :
 CMOS_ctf-append_500-bp

 Output file, image loc#s [] :
 CMOS_ctf-append_500-bp_sum

Display the file CMOS_ctf-append_500-bp_sum

4) particle centering: IMAGIC-COMMAND : ali-dir ** ALIDIR (vs. 19-July-2007) welcomes you ** Alignment modes available: TRANSLATIONAL ROTATIONAL HORIZONTAL VERTICAL ALL Please specify option [] : **TRANSLATIONAL** Correlation functions available: CCF MCF Please specify option [] : CCF Input file, image loc#s [] : CMOS ctf-append 500-bp Output file, image loc#s []: CMOS_ctf-append_500-bp_cent1 Reference file, image loc []: CMOS ctf-append 500-bp sum Give this reference a number (1,2,...) [0] [hit return for default] : Options to filter the reference(s): NO FILTER LOWPASS [filtering the reference; try also NO_FILTER] Please specify option []: **LOWPASS** Halfwidth value for low-pass filter [] : [e.g. 10% of the Nyquist frequency] 0.1 Max shift (pixels/fraction of radius) [] 0.3 [e.g. 30% of the image size] Full output? [] NO Maximum allowable (radial) shift is ... pixels. IMAGE #-ITER ANGLE XSHIFT YSHIFT CCC 1 1 0.00 -1.14 3.81 0.1768 2 1 0.00 -2.32 0.08 0.1810 etc.

display the files: CMOS_ctf-append_500-bp CMOS_ctf-append_500-bp_cent1 (CMOS_ctf-append_500bp_cent2) to check the success of the centering

6) create a mask for the area to be consider IMAGIC-COMMAND :	red dur test-i	ing multivariate m	e statistical analysis (MSA)
** TESTIM (vs. 11-July-2007) welcomes	you **		
Output filename, image loc#s []: Image dimensions X,Y [96, 96] : IMAGIC data formats you can choose: PACK INTG REAL COMP RECO	msam 84,84	ask	[hit return for default]
Please specify option [REAL] Currently, you can choose:	:		[hit return for default]
Please specify option [] : Disc radius (pixel or fraction of inner radius	DISC s) [] : ().75	[to be adjusted to particle size]
7) multivariate statistical analysis (MSA) IMAGIC-COMMAND : Use MPI parallelisation [NO] ** MSA (vs. 3-Sep-2011) welcomes you * Choose mode of operation: FRESH MSA REFINE	: : NO **	msa-run [<u>hit return fo</u> i	<u>r defaults]</u>
Please specify option [FRESH_MSA] :			[hit return for default]
EUCLIDIAN CHISQUARE MODULAT Please specify option [MODULATION]	ΓΙΟΝ	:	[hit return for default]
Input (= output) file (aligned "images") [] : Input MSA mask file [msamask] : Eigenimages output file [: Pixel coordinates output file [] : Eigenpixel vectors output file [] : Number of iterations (<65) [] : Number of eigenimages (<70) [] : Overcorrection factor ($0 \le ocf \le 0.9$) [0.8]		CMOS_ctf-aj eigenim pixcoos eigenpix 25 40 0 8	ppend_500-bp_cent1 [hit return for default] [hit return for default]
Rootname for results file, NO ext. [msa] :	·	0.0	[hit return for default]
Display the file eigenim			
8) hierarchical ascendant classification:			
IMAGIC-COMMAND :		msa-class	
** CLASSIFY (vs. Sept. 2006) welcomes	you **		

Input to be classified:

5

IMAGES PIXEL-VECTORS SEC	QUENCES	
Please specify option [IMAGES] :		[hit return for default]
Input (=output) file (treated by MSA)[]:	CN	IOS ctf-append 500-bp cent1
Percentage of images to be ignored [0] :		[hit return for default]
Active eigenimages for classification []	30	t j
Use default classification options [VFS]		[hit return for default]
What number of classes do you wish []	50 [to:	tal narticle number divided by number of
mombars no	r oloss (usu	ally 10, 20, or 3,5 with high contrast images)
members pe	i class (usu	any 10-20, or 5-5 with ingi-contrast images)
Nome of output regults files []:	مام	ssos0 5 0
Name of output results mes [].	Cla	ssesu_50
0) form along arranges		
9) form class averages:		
INTACIC COMMAND - mag sum		
IMAGIC-COMMAND : msa-sum		
** CLACCUN(2(F 1 2007) 1	**	
** CLASSUM (vs. 26-Feb-2007) welcom	es you **	
	~-	
Input images to be summed []:	CN	10S_ctf-append_500-bp_cent1
Rootname of input classification files [] :	cla	sses0_50
Output class averages [] :	cla	ssums0_50
Downweight small classes [NO] :		[hit return for default]
Mode of summing statistics:		
NONE VARIANCE S-IMAGE I-IMAG	E FT	
Please specify option [NONE] :		[hit return for default]
Fraction of worst class members to ignore	01:	[hit return for default]
Display the file classums0 150 (and keen	it displaye	d. use Ctrl Z)
	ii unsping i	
10) band-nass filter the class averages.		
IMAGIC-COMMAND · band-nass		
** INCRAND (vg Ech 2007) welcomes	uou **	
Incoand (vs. red. 2007) welcomes	you ··	50
	classumsu	_50
Output file, image loc#s [] :	classums0	_50-вр
Filter options available:		
BAND-PASS HIGH-PASS LO	OW-PASS	
INVERSE_BAND-PASS		
Please specify option [BAND-PASS] :	BAND-PA	ASS
The image will be band-pass filtered.		
Please specify		
Low frequency cut off [] :	0.04	[remember about Nyquist frequency]
Remaining low freq transmission [0.005]	0.005	[hit return for default]
High frequency cut off [] ·	0.5	[
A SO filter the images too [NO].	0.0	[hit raturn for default]
Aby much the images too [NO].		[mit return for default]

Display the file classums0_150-bp (and keep it displayed, use Ctrl Z, bg to put the job into background)

11) Assigning angles without a reference, based on common lines

IMAGIC	C-COMM	AND :				ang-rec
** EULER (vs.) welcomes you **						
Pointgro	up symm	etry:				
Cl	1	C2	2			
C3	3	C4	4			
C5	5	C6	6			
C7	7	C8	8			
C9	9	C10	10			
C11	11	C12	12			
C13	13	C14	14			
C15	15	C16	16			
C17	17	C18	18			
C19	19	C20	20			
C21	21	C22	22			
CN	Ν	D2	222			
D3	32	D4	422			
D5	52	D6	622			
D7	72	D8	822			
D9	92	TETRA	GONAL	23		
O (CUI	BIC) 43	2 IC	OSAHEL	DRAL	532	
NONE						
Please sp	pecify opt	ion [] :		C1	[C1	Point-group symmetry for an asymmetric object]
Option f	or angula	r reconstit	ution:			
NEW		ANCHO	DR SET			
C1 ST	ARTUP	SE	LF SEA	RCH		
SINOG	RAM	SIN	JE CORF	RELAT	TION	
PREDI	CT SINE	CORR P	EĀKS			
Please st	becify opt	ion $[]$:				C1 STARTUP
Input (cl	assum) in	nages, NO	loc#s [] :			classums0 50-bp
Loc# of	THRÉE (classum) i	images to	be use	ed [] :	1; 13; 25 [choose 3 different views; separate
		,	-			location numbers by ";"]
Output (ordered) i	mage file	[my_orde	ered] :		[hit return for default; selected
			(class a	verage	es will be put into a new file called <u>my_ordered]</u>
Output s	inograms	, NO loc#s	s [my_sin	o]:		[YES, hit return for default; sinogram file]
ASQ filt	er the sine	ogram line	es [YES] :		[hit re	eturn for default; amplitude square-root filtering]
Linear m	nask radiu	s for sinog	grams []		0.7	[depends on particle size]
Output s	inecorr fi	le, NO loc	#s [my_s	ine] :		[hit return for default; sinogram correlation file]
Wanted	angular ir	crement i	n search [5.0]:		[hit return for default]
Minimu	n inter-eu	ller stay av	way angle	[30.]	•	[hit return for default]
Full outp	out of the	results [N	0] :		YES	

Are the relative angles clearly bigger than $\sim 40^{\circ}$? If not, select another set of 3 views and start again; Careful to not select mirror images (which have opposite viewing angles and are therefore similar)

12) 3D reconstruction	true		
	ti ut		
** TRUE3D (vs. Jan. 2007) welcom	mes you **		
MPI parallelisation: ONLY_3D ALL NO	NO		
Please specify option [] :			
Please specify option [] :	ALL in one		
Pointgroup symmetry to be used: C1 1 C2 2			
Please specify option [] : Use default 3D reconstruction option Input 2D (classum) images, loc#s []	C1 ns [YES] : :	my_ordered	[hit return for default]
Source of Euler angles: ANGREC_HEADER_VALUES F	PLT_FILE		
Please specify option [ANGREC H	EADER VALUES		[hit return for default]
Output 3D rec. filename, loc#s []:	EIBER_(IEEE5]:	3d 0-1	[file which will contain the
3D reconstruction, sections by sec	tions after weighted l	back-projectio	n]
Output file for reprojections, NO loc	:#s [] :	3d_0-1-repro	j [reprojections
according to the same Euler angle	s as the input images]	
Output file for error projections, NO	loc# [] :	3d_0-1-err	[difference between
reprojection and input image, i.e.	reflects amount of er	ror]	
Mask the reconstruction [] :		YES	
Radius of the mask [] :		0.85	
Hamming window factor [] :	F]	0.6	
Object size as fraction of image size	[]:	0.8	

Now display the files my_ordered and 3d_0-1-reproj for comparison, do they look correct?

13) Add more views to the angular reconstitution to improve the structure: IMAGIC-COMMAND : ang-rec

** EULER (vs. 27-Sep-2006) welcomes you **

Pointgroup symmetry: C1 1 C2 2

Please specify option []:C1Option for angular reconstitution:
NEWANCHOR_SET

...

C1_STARTUP SELF_SEARCH	
SINOGRAM SINE_CORRELA	ATION
PREDICT SINECORR PEAKS	
Please specify option [C1_STARTUP] :	NEW
Option of NEW:	
FRESH ADD REMOVE_PROJ	
Please specify option [ADD] :	ADD
Input (classum) images, NO loc#s []:	classums0_50-bp
Location number(s) wanted [] :	1;23;31;45 [select one image or a series of images]
Output (ordered) image file [my_ordered] :	: [hit return for default]
Output sinograms, NO loc#s [my_sino] :	[hit return for default]
ASQ filter the sinogram lines [YES] :	[hit return for default]
Linear mask radius for sinograms [] :	0.7 [as before]
Output sinecorr file, NO loc#s [my_sine] :	[hit return for default]
Wanted angular increment in search [5.0] :	[hit return for default]
Full output of the results [YES] :	NO

14) 3D reconstruction with more views

IMAGIC-COMMAND : true

** TRUE3D (vs. Jan. 2011) welcomes you **	
MPI parallelisation:	
ONLY 3D ALL NO	
Please specify option [NO] :	[as before]
Pointgroup symmetry to be used:	
Please specify option [C1] :	[as before]
Use default 3D reconstruction options [YES] :	[as before]
Input 2D (classum) images, loc#s [my_ordered] :	[as before]
Source of Euler angles:	
ANGREC_HEADER_VALUES PLT_FILE	
MRA_HEADER_VALUES	
Please specify option [ANGREC_HEADER_VALUES] ·	[as hefore]

Trease specify option [ANOREC_TEADER_VALUES].	
Output 3D rec. filename, loc#s [3d_0-1] :	3d_0-2
Output file for reprojections, NO loc#s [3d_0-1-reproj] :	3d_0-2-reproj
Output file for error projections, NO loc# [3d_0-1-err]:	3d_0-2-err
Mask the reconstruction [YES] :	[as before]
Radius of the mask [0.85] :	[as before]
Hamming window factor [0.6] :	[as before]
Object size as fraction of image size [0.8] :	[as before]

Compare again new files my_ordered and 3d_0-2-reproj

15) Make forward projections

(could be used as references for a multiple-reference alignement, here only for comparing forward projections of 3d_0-1 and 3d_0-2)

IMAGIC-COMMAND :	threed-for	
** FORWARD (vs. Jan. 2007) welcomes	you **	
Input 3D image file [] :	3d_0-1	
Output file for forward projections []:	3d_0-1-24	
Threshold 3D density value [-99999] :		[hit return for default]
Option used for current IMAGIC command	l: FORWARD	
Mode of interpolation for projecting:		
NEAREST_NEIGHBOUR BILINEAR	SPLINE	
SINC NARROWING WID	ENING	
OBLIQUE_SAMPLING HEADERS_O	NLY	
Please specify option [WIDENING] :		[hit return for default]
Choose projection option:		
FILE ANOTHER INTERACTI	IVE ORTHOGONAL	
SPIRAL TETRAHEDRON TOMO	OGRAPHY STEREO	
UNIFORM ICOSAHEDRON ASY	M_TRIANGLE RANDOM	
Please specify option [ASYM_TRIANGLE	6] :	[hit return for default]
Pointgroup symmetry to be used:		
C1 1 $C2$ 2		
Please specify option [C1] :		[hit return for default]
Option to chose Euler angles:		
EQUIDIST RANDOM		
Please specify option [EQUIDIST] :		[hit return for default]
Option for Euler angle alpha:		
ZERO ROTATE		
Please specify option [ZERO] :		[hit return for default]
Wanted angular increment in search [] :	45	
Please specify option [] :	NO	

Do the same for 3d_0-2; Compare files 3d_0-1-24 and 3d_0-2-24 , did the quality of the reconstruction improve?

If time allows: refine the structure by using forward projections as references: run m-r-a (multi-reference-alignment), then msa and classification and 3D reconstruction (beginning of the iterative structure refinement procedure)

Optional (not part of practicals at Oleron school, but useful to see Fourier effects / reciprocity of dimensions in Fourier space, and border effects of masks:

I. Illustration of the Fourier transformation

cp ../FT-effects/* . [copy over the images to work on] Files names are: description: checker 8 checkerboard array checker 32 checkerboard array sharp disc disc disc-smooth smooth disc square square Calculate Fourier transformation of these images: [shortcut for starting IMAGIC program] IMAGIC-COMMAND: fft ** INCFFT2D (vs. Aug. 2005) welcomes you ** Input file, image loc#s [] : checker 8 Output file, image loc#s [] : checker_8-fft [give output file name] Mode of operation: FORWARD FFT **REVERSE FFT** AUTO CORRELATION SELF CORRELATION POWER SPECTRUM AMPLITUDE SPECTRUM Please specify option [] : FORWARD [hit return] [do the same for the other images: produce files: checker 32-fft, checker 8-fft, disc-fft. disc-smooth-fft, square-fft [or Ctrl C] when finished quit display these files in IMAGIC: disp [under linux or within IMAGIC] Input image file, loc#s [checker 8] : checker_8 Size of the display window [600,600] [hit return for default] : Type of cursor: CROSS SQUARE CIRCLE Please specify option [CROSS] [hit return for default] : Parameters to be changed: NO CHANGES(=DISPLAY), SETTINGS, OPTIONS [NO] [hit return for default] : To adjust scale of display: scale 4

11

<u>disp</u>

Input image file, loc#s [checker_8] : checker_32 [next file name] etc.

Switch between display windows to compare the images (do not move displays around such that they remain aligned with respect to each other)

Then display the corresponding FT's, files: checker_8-fft checker_32-fft Switch between these display windows to compare the images

With the same procedure, compare sharp and smooth discs and the square:discdisc-fftdisc-smoothdisc-smooth-fftsquaresquare-fft

When displaying the files **disc-fft** and **disc-smooth-fft** you can draw a profile of the spectrum: In the display command window: Parameters to be changed:

NO_CHANGES(=DISPLAY), SETTINGS, OPTIONS [NO] :	profile	e
Use cursor to position profile [NO]:		[NO; hit return for default]
Starting point (IMAGE coordinates X,Y) [1,1] :	1,1	
End point (IMAGE coordinates X,Y) [128,128] :	65,65	
Parameters to be changed:		
NO CHANGES(=DISPLAY), SETTINGS, OPTIONS [NO] :		[hit return for default]
Output device (X_WINDOWS, PS, FILE) [X_WINDOWS] :		[hit return for default]

Display settings: device 600, 1200 scale 4 file filename grey -10,10 profile 1,1 65,65

Basic Steps in Single particle image processing and 3D reconstruction

- I. Pre-processing
- Digitization of micrographs (negatives); not needed if CCD/CMOS images
- particle selection, « boxing »
- correction of the contrast transfer function
- band-pass filtering and normalisation of particle images

II. Structure determination

- particle centering / alignments
- MSA (multivariate statistical analysis) + classification
- angle assignment
 - angular reconstitution
 - projection matching
- 3D reconstruction
- structure refinement
- resolution assessment
- map interpretation; fitting of known structures, atomic model building...

Some basic concepts of cryo-EM & 3D reconstruction

Correct terms are important (be precise and rigorous in science :-)				
By cryo-EM, we obtain:	technically:			
- a "3D reconstruction" (initial or refined)	- back-projection			
- a "cryo-EM map" or "density map"	- angular reconstitution			
- a "structure"	- random conical tilt			
<u>NOT:</u>	- tilt series / tomogram			
- an "envelope" (would be SAXS or neg. stain. EM)				
- a "volume", units would be $Å^3$ (e.g. volume of a pocket, volume x density = mol. mass)				
- a "surface", units would be $Å^2$ (e.g. interaction surface between 2 proteins)				
- a "model", would be a molecular model <i>fitted to</i> the map (crystallography/cryo-EM)				
or a model <i>compatible with</i> SAXS data or NMR restraints;				
other "models": "homology model", "hypothetical model", "working model"				

Some basic concepts of cryo electron microscopy

Correct terms are important:

A classification is based on a statistical analysis:

- multivariate statistical analysis (MSA) provides information on variance (variability) which serves to merge similar images into class averages (classes);

is *independent* of a reference

- classes *are NOT*: the sum of images that correlate best with a reference (through a multi-reference alignment)

Some basic concepts of cryo electron microscopy

Basic aspects:

- "resolution" corresponds to "frequency" in image processing (1/ Å)
- Nyquist frequency is = 2 x pixel size, e.g. 1 Å / pixel → Nyquist = 2 Å
- interpolations during 2D image alignment and 3D reconstruction limit the possible resolution to about 2/3 of the Nyquist frequency, i.e. here ~ 3 Å (exception: super-reso) pixels in 3D: "voxel"

Consider:

- any correlation calculation (e.g. alignment) is biased by the reference used
- resolution estimation, criteria used:
 - 0.5, arbitrary, historically from the virus field, tends to underestimate resolution
 - 0.143 (Henderson) and ½ bit (van Heel)
 - 3 σ , not used anymore (over-estimation)
 - features in the map: can we see dsRNA helices (~10-12 Å resolution), α-helices (~8 Å), β-sheets (~5 Å) or side chains (4-2.5 Å depending on size)?

