Que peut-on voir avec un microscope électronique à transmission ?

What can we see with a TEM ?

Pierre-Damien COUREUX Ecole polytechnique Rénafobis

Oléron – 7 juin 2015

Origin of research in biology

Structure/function studies

Structure/function studies

Watson/Crick (1953)

Perutz/Kendrew (1959)

Structural biology today

X-ray crystallography

Electron microscopy (EM)

Structural biology statistics

Electron microscopy

- What type of biological material can we study (cell, protein, atom) ?
- Difference optical microscopy vs electronic microscopy ?
- Which microscopy ? For what for?
- Composition of an electron microscope
- What structural informations can you get?

Size of objects

What is the resolution that you can achieve ?

To summarize, it's the smallest detail that you can observe.

Wavelength of light

Numerical aperture of the lens

distance

Rayleigh criterion:

Refraction index of studied matter

d = 0,61 λ / n sin(α) ~

To simplify: d \approx 0.5 λ

Optical vs electron microscope

TEM

Wave-particle duality

Relation Acceleration tension - wavelength

$$E_c = \frac{1}{2}mv^2 \qquad \lambda = \frac{h}{mv}$$

Isaac Newton

Louis de Broglie

Albert Einstein

Wave-particle duality

Relation Acceleration voltage - wavelength

$$E_c = \frac{1}{2}mv^2 \qquad \lambda = \frac{h}{mv} \qquad m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$
$$\lambda = \frac{1.23}{\sqrt{V + 10^{-6}V^2}} nm$$

Wave-particle duality

Relation Acceleration voltage - wavelength

	V	λ (nm)	Theoretical resolution (nm)
	10,000	0.01223	0.00611
	50,000	0.00536	0.00268
	100,000	0.00370	0.00185
	1,000,000	0.00086	0.00043

80-300 kV

Electron microscopy

History

Early microscope

1600-1700

Van Leeuwenhoek

Electron microscopy History

DATES	NAMES	HIGHLIGHTS
1897	J.J. Thomson	Electron discovery
1924	L. de Broglie	Identification of electron wavelength in movement
1926	H. Busch	Characterization of lens effects on magnetic and electric fields with electrons
1929	E. Ruska	Ph.D on magnetic lenses
1931	Knoll & Ruska	Building the first electron microscope
1934	Driest & Muller	Resolution better than optical microscope
1938	von Borries & Ruska	First microscope (Siemens) - 10 nm resolution
1940	RCA	Commercial microscope - 2.4 nm resolution
1945		resolution better than 1.0 nm

Electron microscopy History

DATES NAMES Highlights

1960-1970 France/Japon

de Rosier et Klug 1968

3D reconstructior from EM images

Unwin and Henderson 3D structure at 7 1975

Dubochet et al Sample preparati 1981

EM in the 1990-2000s For what for?

Resolution trends

Emdatabank.org

EM in april 2015

Structure of the human 80S ribosome.

Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Nature. 2015 Apr 30;520(7549):640-5.

The structure of the human mitochondrial ribosome.

Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V. Science. 2015 Apr 3;348(6230):95-8.

The complete structure of the 55S mammalian mitochondrial ribosome.

Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Science. 2015 Apr 17;348(6232):303-8.

<u>Structure of the E. coli ribosome-EF-Tu complex at<3 Å resolution by</u> <u>Cs-corrected cryo-EM.</u>

Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H. Nature. 2015 Apr 23;520(7548):567-70.

Electron microscopy types

Scanning electron microscopy (SEM)

Transmission electron Microscopy (TEM)

≠ Atomic force microscopy (AFM)

Fields in transmission electron microscopy

Single particles with high degree of symmetry

Brandt et al, 2010

Tomography

What can we see with a TEM?

Perkins et al, 1997

Tihova et al, 2001

Structure of a protein complex obtained by electron microscopy

Advantages :

- 3D structure of the protein complex
- (very) large complexes (protein \rightarrow cell)
- No crystal needed !
- Small amount of material

Quantity needed for an experiment

Composition of a TEM

Microscope drawbacks

And solutions...

Stability:

- Mechanical vibrations
- Acoustic vibrations
- Magnetic fields
- Electron source
- Lens current

How does a modern TEM look like ?

JEOL -3200 FSC (Japon)

FEI-Titan Krios (USA)

Composition of a TEM

Source of electrons

•Field emission gun (FEG)

Composition of a TEM

Electromagnetic lens

Microscope drawbacks

And solutions...

Q.

Stability:

- Mechanical vibrations
- Acoustic vibrations
- Magnetic fields
- Electron source
- Lens current

Lens:

- Spherical aberration
- Chromatic aberration
- Astigmatism

Lens spherical aberration Correction

http://salve-project.de

http://www.ceos-gmbh.de/English/products/residualsCEXCOR.html

Composition of a TEM

Sample holder

Inside the microscope

Outside the microsocpe

Autoloader (FEI)

Composition of a TEM

Visualization

Screen

Negatives

Digital detector

Digitalization of images

Film sensitive to electrons

Pixel size = 8 µm 1 image / s

Digitalization of images

Film sensitive to electrons

Pixel size = 8 μm 1 image / s

14 μm 1 image / s

5 μm 20 images / s

Sensitivity Film vs Digital detector

Electron microscopy

What structural informations can you get ?

Qualitative analysis

TEM

Agreggation

Filaments

Soluble protein

Localize a protein in a complex Human spliceosome (SEM)

Zhou et al. PNAS 2002

DNA-proteins interactions

Thorslund et al, 2010

DNA-proteins interactions

Song et al, 2014

RNA-proteins interactions

TEM

< 3 Å résolution

Fischer et al, Nature, 2015

Nanowires SEM & TEM

Geobacter metallireducens

Conformational changes

Walker et al, Nature, 2000

The Muscle Group, Leeds 2000

Tomography

Briggs et al, 2006

Marsh et al, 2001

Baumeister, 2004

Cryo-ET on whole cell or sections

Lučić et al, 2013

Segmentation – Template matching

Lučić et al, 2013

Sub-tomogram averaging

Earl et al, 2013

Dynamic of a mechanism

Structure of a protein complex obtained by electron microscopy

Advantages :

- 3D structure of the protein complex
- (very) large complexes
- No crystal needed !
- Small amount of material

Drawbacks :

- Size limit (>100-300 kDa)
- High computing power
- Signal/noise ratio very low
- Dose /contrast compromise

Sample preparation

Negative stain

Frozen hydrated

Durand et al, 2013

Nature Reviews | Microbiology

Data processing

$2D \rightarrow 3D \rightarrow$

CLEM

Correlative light-electron microscopy

Tanaka et al, Cell Reports, 2012

Questions ?